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Abstract. This paper introduces GOSPEL, a behavioral specification
language for OCaml. It is designed to enable modular verification of data
structures and algorithms. GOSPEL is a contract-based, strongly typed
language, with a formal semantics defined by means of translation into
Separation Logic. Compared with writing specifications directly in Sepa-
ration Logic, GOSPEL provides a high-level syntax that greatly improves
conciseness and makes it accessible to programmers with no familiarity
with Separation Logic. Although GOSPEL has been developed for speci-
fying OCaml code, we believe that many aspects of its design could apply
to other programming languages. This paper presents the design and se-
mantics of GOSPEL, and reports on its application for the development
of a formally verified library of general-purpose OCaml data structures.

1 Introduction

Functional programming languages are particularly suited for producing formally
verified code. For example, the formally verified C compiler CompCert [26] is
written in the applicative subset common to OCaml and Coq [35]. As another
example, the verified microkernel seL4 [21] features components that are written
and verified in Haskell, and then translated into C. The main reason for this
adequacy is that most functional language constructs directly map to logical
counterparts. In Coq, purely functional programs may be directly viewed as
logical definitions. Thus, writing specifications for a purely functional program
simply amounts to stating a lemma relating input and output values.

Functional programming is not, however, limited to purely applicative pro-
gramming. The use of effectful features such as arrays and mutable records is
necessary to implement efficient data structures and algorithms. For example,
OCaml allows writing clean and concise code for functional and imperative data
structures and algorithms. The OCaml language (excluding its object-oriented
features) provides a straightforward semantics for its constructs that facilitates
the verification process, compared with other languages that pervasively use
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more complex features such as dynamic dispatch or inheritance. Thus, program-
ming in an effectful functional language such as OCaml can be an interesting
route to producing verified, relatively efficient code.

Unlike purely functional code that may be mapped directly to logical def-
initions, effectful code needs additional infrastructure to write specifications.
Indeed, one needs means of describing the scope and the nature of side effects.
For each function, it is necessary to specify what part of the mutable state it
may access, modify, create, and destroy. Prior work has proposed Separation
Logic [32] for reasoning about imperative programs, including those featuring
nontrivial manipulations of the mutable state. Although it is very expressive,
Separation Logic suffers from two downsides that, we believe, limit its wide
adoption. First, Separation Logic specifications are fairly verbose in practice.
Second, its standard presentation often appears fairly technical.

In this work, we present GOSPEL, a specification language for OCaml inter-
faces whose semantics is defined in terms of Separation Logic. Compared with
Separation Logic, GOSPEL greatly improves conciseness and accessibility. The
GOSPEL acronym stands for “Generic Ocaml SPEcification Language”. In par-
ticular, the word “Generic” underlines the fact that this specification language is
not tied to a specific verification tool, but rather intended to be used for different
purposes, such as verification, testing, or even informal documentation.

GOSPEL fits in the tradition of other behavioral specification languages [15]
such as SPARK [3], JML [23], or ACSL [1]. In contrast with these languages,
GOSPEL features permissions as in Separation Logic. Unlike other tools based
on Separation Logic, such as VeriFast [17] or Viper [27], GOSPEL implicitly
associates permissions with data types, thereby significantly improving concision.

The contributions of this paper are as follows. First, we introduce GOSPEL
through examples (Sec. 2). Second, we propose a formal semantics by means of a
translation into Separation Logic (Sec. 3). Third, we report on an implementation
of GOSPEL and its application to the verification of an OCaml library (Sec. 4).
We finish by discussing related (Sec. 5) and future work (Sec. 6).

2 An Overview of GOSPEL

2.1 Basic Operations on a Mutable Queue

We first present a GOSPEL specification for a mutable queue data structure.
This specification covers operations exposed by an OCaml interface for mutable
queues, independently of any specific implementation (which could be based,
e.g., on doubly-linked lists, ring buffer, etc.). In OCaml, an abstract interface is
described in an .mli file. Within such a file, the GOSPEL specifications appear
in comments that begin with the @ symbol. Such comments are ignored by the
OCaml compiler, but can be parsed and processed by a verification tool.

The abstract data type ’a t represents a parameterized queue storing ele-
ments of type ’a. To begin with, we provide a mutable model annotation for
this type, to associate a model field called view with every value of type ’a t.
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type ’a t
(*@ mutable model view: ’a seq *)

For a given queue q, the projection q.view describes the mathematical sequence
of elements stored in the queue. The model field view has type ’a seq, which
corresponds to the type of purely applicative sequences (i.e., logical sequences).
This type ’a seq is defined in the GOSPEL standard library.

The view field is tagged mutable to account for the fact that the sequence
of elements stored in a queue may change over time. In general, a given OCaml
type may feature several model fields, each being mutable or not. For example,
a fixed-capacity mutable queue would typically feature an immutable model
field describing its maximum capacity, in addition to the mutable model field
describing the sequence of its elements.

Let us now declare and specify the operation that pushes an element of type
’a to the front of a queue of type ’a t. We first write the OCaml type, then the
GOSPEL specification.

val push: ’a -> ’a t -> unit
(*@ push v q

modifies q
ensures q.view = v :: old q.view *)

The GOSPEL specification first names the two arguments with v and q. Next,
it indicates that q might be mutated during a call to push using the modifies
clause. Last, it features an ensures clause describing the postcondition. In this
case, it asserts that the updated sequence of elements in the queue (q.view)
consists of the sequence of elements before the call (old q.view), extended with
the new element v added at the front. We choose arbitrarily to model the queue
with insertion at the front of the sequence and removal at the end of it.

Here, the type of q features a single mutable model field, thus the clause
modifies q is equivalent to modifies q.view. In the case of a type featuring
several model fields, the modifies clause may include only a subset of the fields,
capturing the fact that the fields which are not mentioned remain unchanged.

We next present three more functions from the interface of mutable queues
to illustrate other features of GOSPEL. The function pop extracts an element
from the back of a nonempty queue. This function includes a requires clause,
to express the precondition asserting that the queue must be nonempty. Note
that the first line of the GOSPEL specification assigns the name v to the return
value, so that it may be referred to in the postcondition.

val pop: ’a t -> ’a
(*@ v = pop q

requires q.view <> empty
modifies q
ensures old q.view = q.view ++ v :: nil *)

The next function, is_empty, tests whether a queue is empty. This function does
not mutate the queue, as reflected by the absence of a modifies clause.
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val is_empty: ’a t -> bool
(*@ b = is_empty q

ensures b <-> q.view = empty *)

The function create below, returns a fresh queue data structure, with empty
contents. It is specified as follows.

val create: unit -> ’a t
(*@ q = create ()

ensures q.view = empty *)

The fact that the function returns a queue distinct from any previously-allocated
queue is implicit because the type ’a t has been declared with a mutable model
field. This design choice is motivated by the fact that writing a function that
returns a non-fresh, mutable data structure is considered bad practice in OCaml.

2.2 Destructive and Nondestructive Operations

We next explain how to specify functions that involve more than one mutable
value, by presenting three concatenation functions for mutable queues. The first
function, called in_place_concat, receives two (distinct) queues as arguments.
It migrates the contents of the first queue to the front of the second queue, then
clears the contents of the first queue.

val in_place_concat: ’a t -> ’a t -> unit
(*@ concat q1 q2

modifies q1, q2
ensures q1.view = empty
ensures q2.view = old q1.view ++ old q2.view *)

The clause modifies q1, q2 asserts that both queues are updated. The first
ensures clause describes the new state of q1 as the empty sequence. The second
ensures clause describes the new state of q2 as the result of the concatenation
of the two original sequences. The queues q1 and q2 are implicitly required to
be separated, that is, not aliased. This implicit assumption is another deliberate
design choice of GOSPEL. Only arguments that are read-only may be aliased.

The next function, specified below, is similar to in_place_concat, with the
difference that it destroys the queue q1 instead of emptying it. In other words,
after the call, q1 cannot be used anymore. To describe the loss of the queue q1,
we replace modifies q1 with the clause consumes q1, as shown below.

val in_place_destructive_concat: ’a t -> ’a t -> unit
(*@ concat q1 q2

consumes q1 modifies q2
ensures q2.view = old q1.view ++ old q2.view *)

Note that the ensures clause may only refer to old q1.view, but not to q1.view,
since there is no “valid new state” for q1. Note also that an implementation of
in_place_destructive_concat is allowed to performed arbitrary side effects
on q1, which gets discarded after the call.
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The third function, called nondestructive_concat, takes two queues as
read-only arguments, and produces a fresh queue with the concatenation of the
contents of the two input queues. It is specified as follows.

val nondestructive_concat: ’a t -> ’a t -> ’a t
(*@ q3 = concat q1 q2

ensures q3.view = q1.view ++ q2.view *)

The absence of a modifies clause implicitly asserts that the arguments are read-
only. When arguments are read-only, it is safe to alias them. For example, a call
of the form non_destructive_concat q q is allowed.

2.3 Higher-Order Functions

In OCaml, iterations over containers are typically implemented using a higher-
order function. For example, map f q produces a fresh queue whose elements are
the pointwise applications of the function f to the elements from the queue q.
Although Separation Logic does support the general case where the function f
may perform arbitrary side effects [5,6], we cover in this paper only the simpler
case where f is a pure function. In this case, we specify map as follows:

val map: (’a -> ’b) -> ’a t -> ’b t
(*@ r = map f q

ensures length r.view = length q.view
ensures forall i. 0 <= i < length q.view ->

r.view[x] = f q.view[i] *)

We leave the generalization to the general case of an effectful f to future work.

2.4 Ghost Variables

Ghost arguments and ghost return values may be used to specify a function.
In GOSPEL syntax, ghost entities appear within square brackets in a function
prototype. Consider the example below of a function that computes the largest
power of two no greater than a given integer n. The ghost return value k is a
convenient means of specifying that r is a power of two.

val power_2_below: int -> int
(*@ r, [k: integer] = power_2_below n

requires n >= 1
ensures r = power 2 k && r <= n < 2 * r *)

In GOSPEL, the type of a ghost variable must be provided. Here, k is declared
with type integer, which denotes the GOSPEL type of mathematical integers.

2.5 Non-Visible Side Effects

We next discuss operations that may modify the internal state of a data structure
without modifying the value of the model fields. Simply pretending that the
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operation does not modify the structure would be unsound, as it would suggest
that the structure is read-only.

As a first example, consider a random generator module. Type rand_state
represents the internal state of a generator (i.e., the current value of the seed).
We do not wish to expose the implementation of the state, yet we wish to expose
in the specification the fact that there exists an internal state. To achieve this,
we associate with the type rand_state a mutable model field of type unit.

type rand_state
(*@ mutable model internal: unit *)

The function random_init takes as argument a seed and produces a fresh ran-
dom generator state of type rand_state. This function needs no specification.

val random_init: int -> rand_state

The function random_int takes as argument a state s and an integer m, and
returns a pseudo-random integer smaller than m. This function performs a side
effect on the state s, hence the clause modifies s.

val random_int: rand_state -> int -> int
(*@ n = random_int s m

requires m > 0 modifies s ensures 0 <= n < m *)

Similarly to the mutable queue example, here the clause modifies s is equiva-
lent to modifies s.internal. Even though there is only one possible value of
type unit for this model field, the fact that it is declared in the modifies clause
is important because it specifies that internal side effects may be performed. If
no modifies clause were provided, the argument s would be implicitly assumed
to be read-only: no side effects would be allowed, even internally.

As a second and more challenging example, consider a union-find data struc-
ture that maintains disjoint sets using a pointer-based representation of a reverse
forest. Each element of a union-find is represented as a value of type elem, an ab-
stract data type. Operations on a union-find instance perform path compression,
hence they modify the internal state of the structure, even when the exposed
logical state remains unchanged. To account for the fact that an operation per-
formed on a given element does not alter only this element, but potentially all
the elements in the union-find instance, we do not associate any mutable model
field to the type elem. Instead, we introduce a ghost type named uf_instance,
meant to describe the state of all the elements in the union-find instance.

The ghost type uf_instance features three mutable model fields: a domain
dom describing the set of elements in the current instance; a logical map rep that
binds each element to its representative; and a model field called internal of
type unit. The latter is used to describe the internal side effects performed by
operations such as find which exposes no visible side effect.

We impose several well-formedness invariants on these fields. These invariants
must hold for any value of type uf_instance, before and after any call to a
function from the interface. The GOSPEL specification is as follows.

type elem
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(*@ type uf_instance *)
(*@ mutable model dom: elem set *)
(*@ mutable model rep: elem -> elem *)
(*@ mutable model internal: unit *)
(*@ invariant forall x. mem x dom -> mem (rep x) dom *)
(*@ invariant forall x. mem x dom -> rep (rep x) = rep x *)

The function equiv below takes as arguments a ghost value uf of type
uf_instance and two elements of type elem from the domain of the instance.
It tests whether the two elements belong to the same class. The modifies
uf.internal clause indicates that side effects may be performed on the internal
state.

val equiv: elem -> elem -> bool
(*@ b = equiv [uf: uf_instance] e1 e2

requires mem e1 uf.dom && mem e2 uf.dom
modifies uf.internal
ensures b <-> uf.rep e1 = uf.rep e2 *)

The ghost function create_instance, specified below, enables creating a fresh
and empty instance of union-find.

(*@ val create_instance: unit -> uf_instance *)
(*@ uf = create_instance ()

ensures uf.dom = {} *)

The function make populates a given instance with a fresh element. It updates the
union-find instance to reflect the extension of its domain with the new element.

val make: unit -> elem
(*@ e = make [uf: uf_instance] ()

modifies uf
ensures not (mem e (old uf.dom))
ensures uf.dom = union (old uf.dom) (singleton e)
ensures uf.rep = update (old uf.rep) e e *)

The full union-find interface may be found in the VOCaL library—see Sec. 4.

3 Semantics

In this section, we provide a formal semantics for GOSPEL, by means of a
translation into Separation Logic. First, we describe the source and the target
languages of this translation. Then, we illustrate the translation using functions
from Sec. 2. Finally, we present the general translation scheme.

3.1 General Form of GOSPEL Specifications

In the following, we say that a type is represented if its type declaration features
one or more mutable model fields. By extension, we say that an argument of
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a function is represented if its type is represented. Otherwise, we say that it is
non-represented. The terminology reflects the fact that such arguments get, or
do not get, represented as predicates in Separation Logic.

A GOSPEL specification consists of the prototype of a function, followed
with a list of clauses. The prototype indicates the name of the function, of its
arguments, and of its return values, including ghost arguments and ghost return
values within square brackets. The list of clauses include one or several of each
requires, modifies, consumes, and ensures.

The requires clause consists of a proposition that may refer to the model
fields of represented arguments and to the names of the non-represented argu-
ments, whether they are ghost or not. The consumes clause consists of a list
of represented arguments. The modifies clause consists of a list of mutable
model fields associated with represented arguments. These arguments must not
already appear in the consumes clause. If the name of an argument appears in
the modifies clause without a projection, it is interpreted as the list of mutable
model fields associated with that arguments. The ensures clauses consists of a
proposition that may refer to the same entities as the requires clause, minus
the arguments listed in the consumes clause, plus the “old versions” of the fields
listed in the modifies clause. If several requires (or ensures) clauses appear,
they can be grouped using a conjunction. If several consumes (or modifies)
clause appear, they can be grouped by appending their contents.

3.2 Basics of Separation Logic

A heap predicate, written H, is a predicate over the mutable state. If Heap
denotes the type of states, and Prop denotes the type of logical propositions,
then a heap predicate H has type Heap → Prop.

We write HOARE{H} t {λx.H ′} to denote a Hoare triple [16] for a program
term t, with precondition H and postcondition H ′, where x binds a name for
the result produced by t. In total correctness, the interpretation of such a triple
is: “if the predicateH holds in the input state, then the evaluation of t terminates
and produces a value x for which the predicate H ′ holds in the output state”.

In Hoare logic, H and H ′ describe the whole input and output states. In
contrast, Separation Logic allows specifying only the fragment of the state that
is relevant to the execution of the program. For this purpose, Separation Logic
introduces the star operator: H1 ? H2 is a predicate that holds of a state that can
be decomposed in two disjoint parts, one satisfyingH1 and another satisfyingH2.

A Separation Logic triple is written SL{H} t {λx.H ′}. Such a triple is equiva-
lent to the proposition: ∀H ′′. HOARE{H ? H ′′} t {λx.H ′ ? H ′′}. This equivalence
captures the property that a Separation Logic triple is a specification that re-
mains valid in any extension of the input heap over which the program t oper-
ates, with the guarantee that the evaluation of t does not alter values from this
extension. This property is reflected by the frame rule:

SL{H} t {λx. H ′}
SL{H ? H ′′} t {λx. H ′ ? H ′′}

frame
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Three other Separation Logic operators are useful for the purpose of this
paper. The construct [P ] lifts a pure proposition P of type Prop into a predicate
of type Heap → Prop. The construct ∃∃x.H denotes existential quantification
over heap predicates. The construct RO(H) denotes a read-only version of the
predicate H. Read-only predicates are provided by an extension of Separation
Logic [8] that features the following read-only-frame rule:

SL{H ? RO(H ′′)} t {λx. H ′}
SL{H ? H ′′} t {λx. H ′ ? H ′′}

ro-frame

We employ read-only predicates in our translation from GOSPEL to Separation
Logic. All that the reader needs to know is that read-only predicates are duplicat-
able at will; that they may be discarded at any time (i.e., they are not linear, but
affine); and that they may appear only in preconditions, not in postconditions.

3.3 Example Translations of Mutable Queue Specifications

Before presenting the general translation scheme from GOSPEL to Separation
Logic, we first provide concrete instances of the translation for some queue oper-
ations from Sec. 2. Recall that a queue has a single mutable model field of type
’a seq. As a consequence, we introduce a representation predicate R of type
loc → ’a seq → Heap → Prop. Here, loc denotes the type of pointers in
Separation Logic. Concretely, given a pointer q and a sequence L, the heap pred-
icate R q L captures the piece of state and invariants involved in the memory
representation of a mutable queue at address q with contents L.

The translations for the specifications of the queue operations push, pop,
is_empty, and create are shown below.5 Thereafter, variable v has type ’a,
variable L type ’a seq, variable b type bool, and variable u type unit.

{ (R q L) } push v q { λu. ∃∃ L’. (R q L’) ? [L’ = v::L] }
{ (R q L) ? [L 6=nil] } pop q { λv. ∃∃ L’. (R q L’) ? [L = L’++v::nil] }
{ RO (R q L) } is_empty q { λb. [b = true ↔ L = nil] }
{ [True] } create u { λq. ∃∃ L. (R q L) ? [L = nil] }

Observe in particular how the function is_empty takes as argument a read-only
description of the queue. The corresponding triple implicitly asserts that the
queue is returned unmodified in the postcondition.

We next present the translation for the three variants of the concatenation
function from Sec. 2.

{ (R q1 L1) ? (R q2 L2) }
in_place_concat q1 q2
{ λu. ∃∃ L1’ L2’. (R q1 L1’) ? (R q2 L2’) ? [L1’ = nil ∧ L2’ = L1++L2] }

5 The triples are obtained by applying our translation scheme; more concise triples
may be derived for push and create by eliminating existential quantifiers.
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{ (R q1 L1) ? (R q2 L2) }
in_place_destructive_concat q1 q2
{ λu. ∃∃ L2’. (R q2 L2’) ? [L2’ = L1++L2] }

{ RO (R q1 L1) ? RO (R q2 L2) }
nondestructive_concat q1 q2
{ λq3. ∃∃ L3’. (R q3 L3’) ? [L3’ = L1++L2] }

The first function clears the contents of its first argument, whereas the second
function consumes the representation predicate for its first argument. The third
function differs in that it takes two read-only arguments.

3.4 General Translation Scheme from GOSPEL to Separation Logic

To keep things concise and readable, we define the general pattern of the transla-
tion by considering an example that captures the various possible cases. Without
lack of generality, let us assume a type t with two mutable model fields called
left and right. Their types are irrelevant to what follows.

type t
(*@ mutable model left: type1 *)
(*@ mutable model right: type2 *)

To specify values of type t in Separation Logic, we introduce a representation
predicate, called T, of type loc → type1 → type2 → Heap → Prop. Con-
cretely, a heap predicate of the form T p X Y describes the memory layout of a
structure of type t at address p, whose left and right model fields are described
by X and Y, respectively. If invariants were attached to the data type t (as illus-
trated for example in Sec. 2.5), predicate T would capture those invariants.

Consider now the function f specified as follows, for the sake of example.

val f: t -> t -> t -> t -> int -> t * t * int
(*@ p5, p6, m, [h: integer] = f p1 p2 p3 p4 n [g: integer]

requires P
modifies p1, p2.left consumes p3
ensures Q *)

Argument p1 appears in the modifies clause, thus both its model fields may be
modified; argument p2 has only its left field modifiable, thus its right model
field remains unchanged; argument p3 is declared in the consumes clause, thus
it gets lost during the call; argument p4 is not declared in the modifies clause,
thus it is read-only.

Additionally, a precondition P and a postcondition Q are declared. The pre-
condition P is a logical proposition that may refer to the left and right pro-
jections of p1, p2, p3, and p4, as well as to n and g. The postcondition Q may
refer to the same set of variables, minus p3 (which is consumed), plus the old
values of the modified model fields (namely, old p1.left, old p1.right, and
old p2.left), plus the left and right projections of the return values p5 and
p6, as well as to the return values m and h.
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We translate the specification for the function f into the following Separation
Logic statement, where the variables Xi (resp. Yi) refer to the values of the left
(resp. right) model fields.

∀p1 p2 p3 p4 n g X1 Y1 X2 Y2 X3 Y3 X4 Y4,
{ [P] ? (T p1 X1 Y1) ? (T p2 X2 Y2) ? (T p3 X3 Y3) ? RO (T p4 X4 Y4) }
f p1 p2 p3 p4 n
{ λ(p5,p6,m). ∃∃ h X1’ Y1’ X2’ X5’ Y5’ X6’ Y6’. [Q] ?

(T p1 X1’ Y1’) ? (T p2 X2’ Y2) ? (T p5 X5’ Y5’) ? (T p6 X6’ Y6’) }

Observe in particular how the postcondition first binds the return values, then
quantifies existentially: (1) the ghost return value h, (2) the updated model fields
associated with the represented arguments, and (3) the model fields associated
with the represented return values. Observe also how the read-only predicate for
p4 appears only in the precondition (as discussed in Sec 3.2).

The above example illustrates the general scheme behind our translation.
Two other minor aspects are worth mentioning. First, if an argument features
an immutable model field, then we treat this field like a mutable model field not
declared in the modifies clause. Second, for a polymorphic function, we need
to quantify the appropriate type variables in the Separation Logic statement.

4 Implementation and Application

We next describe GOSPEL tools and applications: its parser, its type-checker, its
mathematical library, its connection with verification tools, and its application to
the specification and verification of a general-purpose library of data structures
and algorithms.

Parsing and Type-Checking of GOSPEL Specifications. As explained in Sec. 2.1,
GOSPEL specifications appear in comments in an OCaml interface file. The
GOSPEL parser proceeds in two stages. First, the parser from the OCaml com-
piler is invoked to parse the structure of the file. It produces a parse tree that
features, in particular, type and prototype declarations. The GOSPEL comments
are stored as attributes to these definitions, with payloads represented as strings.6
Second, a dedicated GOSPEL parser is used to parse the attributes that corre-
spond to GOSPEL specifications, and to integrate them with the corresponding
OCaml declarations. The use of two distinct parsers is a deliberate choice, aimed
at making the framework easily maintainable in the face of evolution of either
the OCaml syntax or the GOSPEL syntax.

After being parsed, GOSPEL specifications are type checked. We developed a
type checker independent from that of the OCaml compiler to handle, e.g., types
associated with model fields. Our type checker performs ML-style type inference,
allowing the user to quantify variables without providing their types, and to
6 We patched the parser from the OCaml compiler so as to process comments of the
form (*@ ...*) as if they were written as OCaml attributes of the form [@@gospel
“...”]. The OCaml parser already processes documentation comments in this way.
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apply polymorphic functions without explicit instantiations. The GOSPEL type-
checker verifies in particular the well-formedness of the specification clauses.
For example, it checks that only legitimate variables appear in the requires,
consumes, modifies, and ensures clauses (as explained in Sec. 3.1).

The GOSPEL Library. The purpose of the GOSPEL library is twofold. First,
the library provides mathematical theories to be used in specifications, covering
unbounded integers, sequences, sets, bags, and maps. For example, a queue is
specified using a sequence, a priority queue is specified using a bag, etc. Sec-
ond, the library provides logical models for built-in OCaml data types, such
as machine integers, lists, arrays, and strings. The GOSPEL library takes the
form of regular OCaml .mli files, containing only GOSPEL declarations. These
libraries may contain symbols that are left uninterpreted. For instance, the li-
brary currently does not give any definition for what a “set” is. For the moment,
it appears more practical to leave a collection of mathematical symbols abstract
and to provide, for each verification tool, a mapping from these abstract symbols
towards their correponding realization (e.g., in SMT theories or Coq mathemat-
ical theories).

Program Verification w.r.t. GOSPEL Specifications. In Sec. 3, we have provided
GOSPEL with a formal semantics. The existence of this semantics means that
GOSPEL specifications make sense independently of which verification tool is
used to carry out the proofs. Thus, for a given program, we are free to use the
most suitable verification tool. For example, if the code is purely functional, it
makes sense to verify it directly using Coq. If the code features advanced pointer
manipulations, then CFML [5,6], with its interactive proofs in Separation Logic,
would be the tool of choice. If mutability is limited, then the Why3 tool [13]
provides convenient support for automated proofs, by leveraging SMT provers.
Thanks to the existence of the common specification language GOSPEL, it is
even possible to build modular proofs where different components are verified
using distinct tools.

Implementing a verification tool to handle GOSPEL specifications can be
achieved in several ways. In the case of Why3, the GOSPEL specification is trans-
lated into Why3’s specification language; the source code is written in WhyML,
proved to satisfy the specification, then extracted into OCaml code.7 In the case
of CFML, the GOSPEL specification is translated into CFML’s specification
language; the OCaml source to be verified is parsed by CFML and converted
into a characteristic formula expressed in higher-order logic; one then proves
that the characteristic formula entails the desired specification.

Application to the VOCaL Library. A collection of general-purpose data struc-
tures and algorithms is an essential ingredient for the successful construction
of a large-scale software. When it comes to formal verification, it thus makes
sense to start with the verification of such libraries. This observation has mo-
tivated efforts in the deductive verification community to verify programming
7 More details about the Why3 workflow may be found in Pereira’s PhD thesis [30].
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libraries [11,31]. OCaml is a programming language that lends itself particularly
well to formal verification, in particular thanks to its simple semantics. More-
over, OCaml is used to implement several tools whose soundness is critical, e.g.,
proof assistants [35], static analysis tools [9, 20], SMT solvers [2]. Thus, there
would be strong benefits in developing a verified library for OCaml.

The recent VOCaL project precisely aims at developing a “mechanically
Verified OCaml Library” of efficient general-purpose data structures and al-
gorithms. The public GitHub repository of the project already includes sev-
eral OCaml modules, such as resizable arrays, priority queues, and union-find.8
These libraries have been verified using Why3 or CFML. As a contribution of the
present work, we provide GOSPEL specifications for all these verified libraries.

The VOCaL library may be looked at in different ways, depending on one’s
needs. First, one could choose to ignore all the GOSPEL annotations and simply
be interested in using VOCaL as a trustworthy library of OCaml code. Second,
one could be interested in reading GOSPEL annotations from the VOCaL li-
braries in order to unambiguously understand what is the semantics of the oper-
ations that it provides. Third, one might be interested in producing a formally
verified OCaml program, by leveraging the VOCaL libraries. In this case, the
user would engage in verification proofs and would reason about interactions
with the VOCaL libraries by exploiting their GOSPEL specifications.

5 Related Work

In recent years, a number of behavioral specification languages [15] have been
proposed for various state-of-the-art programming languages, such as JML for
Java [23] and ACSL for C [1]. The SPARK [3] programming and specification
language is a subset of the Ada language targeting verification. Several verifi-
cation tools, such as VeriFast [17], Viper [27], Why3 [13], and Dafny [24], come
with their own specification languages.

Three important aspects influence the design of specification languages. The
first aspect is whether specifications are meant to be executable or not. For ex-
ample, JML and SPARK specifications are executable [22]. ACSL specifications
are not executable, but contains an executable subset called E-ACSL [33]. Re-
quiring executable specifications severely constrains expressivity. For this reason,
we chose to not impose executable specifications in GOSPEL. A second aspect is
whether specifications are meant to be entirely discharged by automated tools.
For example, Dafny emits proof obligations for SMT solvers (Z3, in particular).
Targeting fully automated proofs may impose a certain presentation style for
specifications. GOSPEL is agnostic to the verification tool. Both SMT-based
and interactive-proofs-based approaches can be used.

The third aspect of a specification language is how it treats the frame problem,
and how it describes the separation of arguments and the freshness of return
values. Specifications languages such as SPARK, JML, or ACSL require explicit

8 https://github.com/vocal-project/vocal
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freshness assertions. Dafny [24] exploits Dynamic Frames [19], an approach that
is flexible but that leads to relatively verbose specifications [18]. Chalice [25]
leverages Implicit Dynamic Frames [34]. This approach, partially inspired by
Separation Logic, aims at providing first-order tool support. Its assertions are
interpreted with non-separating conjunctions, like in Separation Logic, yet with
explicit accessibility predicates. For more details on Dynamic Frames technique,
we refer to Kassios’ tutorial [18], and to an article by Parkinson and Summers [29]
which formally explores the relationship between Implicit Dynamic Frames and
Separation Logic. In contrast, GOSPEL is firmly grounded on Separation Logic:
accessibility predicates, disjointness and freshness assertions are always implicit.

Why3 [13] is a deductive verification tool with a dedicated programming
and specification language called WhyML. A number of aspects of GOSPEL
are based on WhyML. There are, however, important differences. A first im-
portant difference is that the semantics of GOSPEL is given by means of Sep-
aration Logic, whereas WhyML is given a more traditional semantics in terms
of weakest-precondition calculus and first-order logic [12]. A second difference
is that GOSPEL targets a mainstream programming language used in the de-
velopment of large and complex software systems. Although WhyML has many
features similar to OCaml, it remains a verification-oriented language, with many
OCaml features missing. In contrast, GOSPEL intends to introduce, lightly and
incrementally, ideas of formal methods into the OCaml community. For instance,
GOSPEL may be used in large projects to specify and verify a number of critical
core components, while leaving other components unverified.

Compared with writing specifications directly in Separation Logic, the use
of GOSPEL significantly improves the practical experience of writing and read-
ing specifications. The example from Sec. 3.4 gives an idea of how much more
concise a GOSPEL specification might be relative to its Separation Logic coun-
terpart. We next summarize the key design choices that we have made w.r.t.
plain Separation Logic.

In Separation Logic, one has the possibility to introduce several representa-
tion predicates for a same type. This possibility may be useful in rare cases for
specifying advanced access patterns in complex data structures. In practice, the
vast majority of data structures are naturally specified with a unique representa-
tion predicate. In GOSPEL, we leave the representation predicates implicit, and
instead refer directly to the names of the model fields. (We could add support
for multiple representation predicates in the future, while keeping the current
behavior as a default.) Furthermore, in GOSPEL, unlike in Separation Logic, we
do not need to provide names for the model fields that are not explicitly involved
in the specification.

Another difference is that in Separation Logic, permissions (representation
predicates) have to be provided even for read accesses. Yet, it would serve little
purpose to provide a function with a pointer if not providing at least the cor-
responding read permission. Thus, we have chosen for GOSPEL a design that
assumes implicit read permissions for all the arguments provided to a function.
For arguments that require write access, Separation Logic specifications require

14



to repeat the permission both in the precondition and the postcondition. One
exception is in the rare case where an argument is consumed. In GOSPEL, we
only require a list of the names of the modified arguments to appear either in
the modifies clause or in the consumes clause. This design avoids repetitions
and significantly reduces the clutter.

VeriFast [17] is a verification tool targeting C and Java programs. It features a
specification language based on Separation Logic. As recently demonstrated [4],
it is possible to encode model fields in VeriFast, although with some overheads.
On the contrary, GOSPEL provides builtin support for representation predicates.
Thus, it can leverage dedicated features for manipulating and referring to model
fields, and indicating which ones may be modified. This design enables important
gains in conciseness.

Viper [27] is an intermediate verification language, which features front-ends
for several programming languages, including Java, Python, and Rust. Viper’s
specification language is based on permissions, which are explicitly manipulated
both in contracts and in the code. To indicate that a method has access to a
field, the specification must include an explicit accessibility predicate. Moreover,
to distinguish between read and write accesses, Viper relies on fractional permis-
sions: only a full permission (i.e., a fraction equal to 1) enables write access. In
contrast, GOSPEL design makes read-access permissions implicit for all fields,
and write-access permissions are simply listed in the modifies clause. Further-
more, GOSPEL design takes advantage of read-only permissions, whose benefits
over fractional permissions are discussed in details in the paper that introduces
read-only permissions [8] (§1.3 and §5.4).

6 Conclusion and Future Work

We have presented GOSPEL, a behavioral specification language for OCaml. So
far, a subset of OCaml was identified for which GOSPEL specifications can be
translated to Separation Logic. We expect to extend GOSPEL to a larger subset
of OCaml in the future, to support other constructs such as signature constraints
(with type) and inclusion (include). GOSPEL can also be extended in other
directions, e.g., to allow specifying the asymptotic cost of each function [7,14,28].

We have developed verification frameworks on top of GOSPEL and success-
fully applied them to the verification of an algorithms and data structures library.
So far, these frameworks are based on Why3 and CFML. It would be interesting
to also try and target the Viper ecosystem [27]. One could hope for a straightfor-
ward translation from GOSPEL to Viper, which is based on Separation Logic.

There are several other interesting directions for future work for GOSPEL.
It could be extended to include invariants for, e.g., loops. It could be exploited
for runtime assertion checking, by identifying an executable subset. It could be
integrated with a property-based testing framework, for example leveraging the
qcheck [10] tool that generates random test values satisfying given invariants.

Acknowledgments. We are grateful to X. Leroy, F. Pottier, A. Guéneau, and A.
Paskevich for discussions and comments during the preparation of this paper.
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