Heartbeat Scheduling: Provable Efficiency for Nested Parallelism

Abstract
A classic problem in parallel computing is to take a high-level parallel program written, for example, in nested-paral-allel style with fork-join constructs and run it efficiently on a real machine. The problem could be considered solved in theory, but not in practice, because the overheads of creating and managing parallel threads can overwhelm their benefits. Developing efficient parallel codes, therefore, usually requires extensive tuning and optimizations, whose sole purpose is to reduce parallelism just to a point where the overheads become acceptable.

In this paper, we present a scheduling technique that delivers provably efficient results for arbitrary nested-parallel programs, without the tuning needed for controlling parallelism overheads. The basic idea behind our technique is to create threads only at a beat (what we refer to as the “heartbeat”) and make sure to do useful work in between. We specify our heartbeat scheduler using an abstract machine semantics and provide mechanized proofs that the scheduler guarantees low overheads for all nested parallel programs. We present a prototype C++ implementation and an evaluation that shows that Hearbeat competes well with manually optimized Cilk Plus codes, without requiring manual tuning.

1 Introduction
A longstanding goal of parallel computing is to build systems that enable programmers to write a high-level codes using just simple parallelism annotations, such as fork-join, parallel for-loops, etc, and to then derive from the code an executable that can perform well on small numbers of cores as well as large. Over the past decade there has been significant progress on developing programming language support for high level parallelism. Many programming languages and systems have been developed specifically for this purpose. Examples include OpenMP [44], Cilk [25], Fork/Join Java [36], Habanero Java [33], TPL [39], TBB [34], X10 [16], parallel ML [23, 24, 46, 49], and parallel Haskell [41].

These systems have the desirable feature that the user expresses parallelism at an abstract level, without directly specifying how to map lightweight threads (just threads, from hereon) onto processors. A scheduler is then responsible for the placement of threads. The scheduler does not require that the thread structure is known ahead of time, and therefore operates online as part of the runtime system. Many scheduling algorithms have been developed, taking into account a variety of asymptotic cost factors including execution time [3, 13, 15, 28, 29], space usage [11, 12, 43], and cache utility [1, 9, 10, 18].

Most scheduling algorithms that come with a formal analysis establish asymptotic bounds in a simplified model in which spawning a thread has unit cost. Correspondingly, the job of achieving low constant factors for scheduling operations is usually treated as a purely-empirical question, and approached as such. Yet, in practice, depending on the implementation, the cost of creating a thread, scheduling it, then destroying it, may amount to thousands of cycles. Thus, in spite of the guarantees provided by the asymptotic analysis, poor management of overheads can result in massive slowdowns in practice—sometimes as much as 50x, in our experience. On the other extreme, it is also easy to overcompensate by reducing overheads too much, thereby creating too few threads to keep cores well fed. The key is to find solutions that strike a balance between the two extremes, and do so consistently.
Dozens of papers have been published on various techniques for taming parallelism overheads. To our knowledge, they fall in either of two categories: granularity control approaches [4, 19, 32, 35, 40, 45, 55], and lazy splitting approaches [25–27, 31, 42, 53]. Granularity control aims at coarsening the leaf-level subcomputations to avoid the creation of threads involving little work. Lazy splitting aims at creating threads on demand, postponing the creation of threads until other workers are in need. Although many of these techniques have entered into production systems and have led to improved performance overall, significant challenges remain.

In the face of nested parallelism, that is, when parallel constructs are nested, many of these approaches have been shown by the literature to fail to control overheads for certain classes of programs [53]. Parallelism overheads continue to be a an issue for practitioners, as is evidenced by discussions over online message boards for production systems, such as Cilk Plus, TBB, etc., as well as on Stack Overflow. Expertly implemented research codes are not immune from such issues either: codes from a popular benchmarking suite that is implemented using Cilk Plus sometimes resort to using a variety of heuristics, such as manual loop grains, that, while controlling overheads well in many cases, may still perform poorly on certain classes of input [8]. Even though good results might be achieved on the benchmark considered, there is no guarantee that good performance will be achieved by the resulting program on different input data, or on a different hardware system [2, 51]. Given such sensitivity to input data, hardware details, program structure, etc., we believe that an approach based on a formally verified guarantee may be useful and could lead to greater reliability in the face of uncertainty in the execution environment.

Yet, among all the proposals that we are aware of, we know of only one that provides a formal efficiency bound for nested parallel programs that takes into account the overheads of thread creation, namely oracle-guided scheduling [4]. In that approach, the programmer annotates every parallel call with an expression for computing its asymptotic cost. This approach suffers from one major limitation: it excludes all programs for which the work involved in parallel calls cannot be predicted online. This limitation applies to programs whose control-flow is driven by the data (e.g., a string comparison function), as well as branch-and-bound recursive algorithms for which cost estimates are not available until evaluation completes.

In this paper, we take a different approach to controlling the overheads by proposing a runtime-based approach that enables us to derive efficiency bounds for all fully-strict parallel programs. The class of fully-strict programs is the same as that targeted by the original bounds for work stealing [13]. It includes all programs written using fork-join as well as parallel reductions, which may either be encoded using fork-join or supported natively. We make no additional assumptions on the program being executed. In particular, our approach accommodates arbitrary nesting of parallelism constructs.

This paper makes the following contribution:

- We present heartbeat scheduling, a technique for promoting parallel-call frames into threads, ensuring limited overheads while preserving the asymptotics of the span of the program.
- We formalize our approach using abstract machines, and present formal bounds on the work and span, verified in Coq.
- We present empirical evidence that our approach leads in practice to bounded overheads and competitive performance, by evaluating a number of state-of-the-art benchmarks originally designed for Cilk Plus.

In Section 2, we give an overview of our approach, of the bounds established for it, and of our implementation. In Section 3, we describe our approach formally by means of introducing an abstract machine, and we present the theoretical bounds that apply to heartbeat scheduling. In Section 4, we discuss the concrete implementation of our approach, covering in particular the cactus stack data structure, the optimized treatment of parallel loops, and the heartbeat interpreter used for the proof-of-concept evaluation. In Section 5, we present benchmark results to confirm that our theoretical results on heartbeat scheduling translate into practical benefits. Finally, we discuss related work, and conclude.

2 Overview

Our approach is based on the following: every N steps of computation, where N is a system-dependent parameter, the runtime takes from the stack the top-most frame that corresponds to a parallel call, and promotes this frame into a proper thread that may be subject to load balancing. More precisely, our runtime evaluates parallel function calls using conventional stack frames, essentially like in sequential execution, and only progressively promotes these frames into proper threads ready to be scheduled on different cores. The promotion of the frames into threads takes place at a regular pace, hence the name heartbeat scheduling.

In prior approaches, such as lazy scheduling [53], promotion is triggered, either directly or indirectly, by steal requests. The main limitation is that numerous steal requests may lead to a large number of promotions, potentially resulting in uncontrolled overheads. In contrast, heartbeat scheduling is completely independent from the load of the workers in the system. It relies solely on a processor-local decision, based on the number of cycles elapsed since the previous promotion.

We present a formal bound on the work and span for programs executed using heartbeat scheduling. The total work, including thread creation overheads, is bounded as follows:

$$W \leq (1 + \frac{\tau}{N}) \cdot w,$$

where w denotes the raw work (total sequential execution time, excluding overheads), and where τ
denotes the cost of promoting one frame and scheduling the resulting thread. The total span, including thread creation overheads, is bounded as follows: \(S \leq (1 + \frac{N}{P}) \cdot s \), where \(s \) denotes the span (the length of the critical path) of a fully parallel execution, that is, an execution in which all parallel calls are directly represented as threads. The fact that this bound holds is not immediate and, in particular, rests upon heartbeat always promoting the oldest possible frame. Taken together, the work and span bounds show that the overheads can be tamed down to a small fraction of the run time, while nevertheless preserving the asymptotic amount of parallelism inherent to the program. In particular, unlike most scheduling techniques based on heuristics, heartbeat scheduling cannot be defeated by adversarial programs.

Interestingly, our approach is completely agnostic to the load-balancing algorithm used. For example, we may combine heartbeat scheduling with work stealing, which achieves an execution time bounded as follows: \(T \leq \frac{W}{P} + O(S) \), where \(P \) denotes the number of processors. By plugging our results in those bounds, we derive the following end-to-end bound: \(T \leq (1 + \frac{s}{T}) \cdot \frac{W}{P} + O(S) \). To ensure bounded overheads, it suffices to set \(N = k \tau \), for some factor \(k \). The bound then rewrites as: \(T \leq (1 + \frac{1}{k \tau}) \cdot \frac{W}{P} + O(ks) \). This bound shows that heartbeat scheduling achieves bounded overheads (e.g., 5% for \(k = 20 \)), while at the same time multiplying the span only by a constant factor. According to the bound, all programs with sufficient parallel slackness \([54]\), that is, such that \(\frac{s}{T} \gg kP \), performance should be close to optimal. In practice, this assumption is met by all algorithms featuring a logarithmic (or polylogarithmic) span.

To implement heartbeat scheduling, we consider a so-called cactus stack \([30]\). This representation essentially consists of pieces of the call stack organized in a tree structure. The cactus stack supports parallel computations without prohibitive stack space usage in the worst case. To support constant-time access to the next promotable frame in the stack, we extend the cactus stack with a doubly-linked list between the promotable frames, i.e. the frames associated with parallel calls or parallel loops.

To empirically validate our approach, we devise a proof-of-concept implementation in C++. Instead of relying on special compiler support, our implementation uses an interpreter whereby benchmark programs are represented by values of an AST. Our interpreter explicitly allocates and deallocates frames from the cactus stack and implements frame promotion following the heartbeat strategy. Our implementation depends on regular polling to realize the heartbeat.

Thanks to the fact that sequential blocks are compiled and optimized by a conventional compiler, the resulting interpreter is efficient enough to enable meaningful comparison with the performance of state-of-the-art benchmarks compiled using Cilk Plus. We perform this comparison using parallel programs from the Problem Based Benchmark Suite (PBBS). PBBS consists of nontrivial algorithms exhibiting irregular parallelism \([48]\). The PBBS programs are implemented in Cilk Plus using a careful combination of techniques for controlling granularity.

Our benchmark results show that PBBS programs suffer, in a number of cases, from significant overheads, over 25% of the execution time. In contrast, with heartbeat scheduling, overheads are systematically less than 5%, in accordance with the theoretical bounds for the setting of \(N \) that we consider. Despite the interpretive overheads of our proof-of-concept implementation, our code is generally able to match or beat the performance of PBBS programs. Reported figures show that the heartbeat strategy achieves similar utilization as the original PBBS programs, even though it generates significantly fewer threads.

3 Semantics and analysis

We introduce heartbeat scheduling, as an idealized nested-parallel language, in the setting of an untyped \(\lambda \)-calculus equipped with parallel pairs. This language allows us to present and analyze the key ideas of heartbeat scheduling, abstracting over implementation details. In the implementation section, we will show that the basic transitions, in particular the operation for splitting the stack on promotion operations, can indeed be implemented in constant time.

We give three semantics to that language: a fully-sequential semantics, a fully-parallel semantics, and our heartbeat scheduling semantics. The definition is two-fold.

First, we define a variant of the CEK machine of Felleisen and Friedman \([22]\), which implements sequential call-by-value evaluation. This abstract machine makes the stack explicit and is thus well-suited for describing the stack surgery operations involved in heartbeat scheduling.

Second, we use the abstract machine to define the three aforementioned semantics in big-step style. This big-step presentation allows us to describe the creation of threads in the semantics without having to explicitly manipulate the set of live threads. In particular, the rule describing the parallel evaluation of a pair involves evaluation premises describing distinct, independent instances of the abstract machine.

To formally reason about the work and span of an evaluation, we instrument the big-step judgments in such a way that, in addition to an output value, they also produce a cost graph. This cost graph describes the operations and control dependencies performed during the corresponding execution. All vertices have unit cost except fork-join operations, which are given the weight \(\tau \), to reflect the overhead of thread management. On a cost graph, we define work and span in the usual way, as the weight of the complete graph and as the weight of the critical path, respectively.
We use work and span of an execution. The execution of a fork-join operation incurs an overhead associated with a fork-join operation, but instead weight these operations with a fixed parameter \(\tau \) times the number of fork vertices involved in the graph. The span of a cost graph is equal to the length of the longest path in that graph, when counting \(\tau \) units on every traversal of a fork vertex.

Based on the formal semantics and the cost graphs, we establish the correctness and the efficiency of heartbeat scheduling. The correctness results assert that the heartbeat semantics produces the same results as the fully-sequential and the fully-parallel semantics. The efficiency results have two components. The first component asserts that the heartbeat semantics adds at most \(\frac{N}{\tau} \) work compared with the fully-sequential semantics, where \(N \) is a parameter under user control. In other words, overheads are bounded. The second component asserts that the span of a program executed in the heartbeat semantics increases at most by a constant multiplicative factor \(1 + \frac{N}{\tau} \) compared with the fully-parallel semantics. Thus, the asymptotic amount of parallelism inherent to the program is preserved when using heartbeat scheduling.

For increased confidence, we have formalized in the Coq proof assistant all the technical contents of this section [6].

3.1 Work and span of a cost graph

We use cost graphs as a convenient way to formalize the work and span of an execution. The execution of a fork-join program induces a series-parallel, directed acyclic graph. Figure 1 gives the grammar of cost graphs, which includes: the empty graph, written \(0 \), the one-vertex graph, written \(1 \), sequential composition of two graphs, written \((g_1 \cdot g_2)\), and parallel composition of two graphs, written \((g_1 || g_2)\).

Figure 1 also gives the formal definition of work and span of cost graph \(g \), written \(\text{work}(g) \) and \(\text{span}(g) \), respectively. Unlike prior work, we do not assign unit cost to fork-join operations, but instead weight these operations with some cost \(\tau \). This fixed parameter \(\tau \) represents the runtime overhead associated with a fork-join operation.

Intuitively, the work of a cost graph is equal to the number of vertices plus \(\tau \) times the number of fork vertices involved in the graph. The span of a cost graph is equal to the length of the longest path in that graph, when counting \(\tau \) units on every traversal of a fork vertex.

Figure 1. Cost graphs, and definition of work and span.

U. Acar, A. Charguéraud, A. Guatto, M. Rainey, F. Sieczkowski
We next present big-step judgments describing the fully-sequential, which is essentially a big-step wrapper around the small-step grammar, that is, an evaluation in which every parallel pair gets the length of that chain and match the number of machine steps.

The cost graph produced by such a sequential execution of a machine transitions: $m \rightarrow m'$.

<table>
<thead>
<tr>
<th>VAR</th>
<th>x</th>
<th>σ</th>
<th>k</th>
<th>$\sigma(x)$</th>
<th>$-\vdash k$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>$\lambda x. e$</td>
<td>σ</td>
<td>k</td>
<td>$(\lambda x. e)[\sigma]_1 -\vdash k$</td>
<td></td>
</tr>
<tr>
<td>APPL</td>
<td>(e_1, e_2)</td>
<td>σ</td>
<td>k</td>
<td>$e_1 -\vdash k$</td>
<td></td>
</tr>
<tr>
<td>APPR</td>
<td>$(\lambda x. e)[\sigma]_1 -\vdash k$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BODY</td>
<td>v</td>
<td>σ</td>
<td>k</td>
<td>$e -\vdash k$</td>
<td></td>
</tr>
<tr>
<td>PAIR</td>
<td>$(e_1 \parallel e_2)$</td>
<td>σ</td>
<td>k</td>
<td>$e_1 -\vdash k$</td>
<td></td>
</tr>
<tr>
<td>PAIRR</td>
<td>(v_1, Ω)</td>
<td>σ</td>
<td>k</td>
<td>$e_2 -\vdash k$</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3. Sequential machine transitions: $m \rightarrow m'$.

<table>
<thead>
<tr>
<th>SEQVAL</th>
<th>$v \vdash \text{seq v}; 0$</th>
<th>$m \vdash \text{seq v}; (1 \cdot g)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARVAL</td>
<td>$v \vdash \text{par v}; 0$</td>
<td></td>
</tr>
<tr>
<td>PARSTEP</td>
<td>$c \neq (_____) \Rightarrow (c \vdash \text{par v}; (1 \cdot g))$</td>
<td></td>
</tr>
<tr>
<td>PARPAIR</td>
<td>$(e_1 \parallel e_2) \Rightarrow (e_1 \parallel e_2); g_3$</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4. Sequential semantics: $m \Rightarrow \text{seq v}; g$.

Figure 5. Parallel semantics: $m \Rightarrow \text{par v}; g$.

Parallel pairs have their branches evaluated concurrently by distinct instances of the abstract machine.

3.3 Sequential and parallel cost semantics

We next present big-step judgments describing the fully-sequential and the fully-parallel evaluation of a program.

Figure 4 presents the evaluation judgment $m \Rightarrow \text{seq v}; g$, which is essentially a big-step wrapper around the small-step judgment $m \rightarrow m'$. This wrapper associates a cost graph g to a sequential execution of a machine m that terminates with result value v. The cost graph produced by such a sequential execution consists of a long chain of $\cdot 1$, terminated by a $\cdot 0$. Both the work and the span of the graph g are equal to the length of that chain and match the number of machine transitions performed during the execution.

Figure 5 presents the evaluation judgment $m \Rightarrow \text{par v}; g$, which corresponds to the fully-parallel evaluation of a program, that is, an evaluation in which every parallel pair gets evaluated in parallel by spawning new machines. Concretely, the rule `ParPair` evaluates a parallel pair $(e_1 \parallel e_2)$ by considering independently the evaluation of e_1 and the evaluation of e_2 in two distinct abstract machines, producing the results v_1 and v_2, and the cost graphs g_1 and g_2, respectively. In the third premise of that rule, the pair of results (v_1, v_2) is passed to the remainder of the computation, which is represented by the stack k. The third premise evaluates to a final result v, with a corresponding cost graph called g_3. The cost graph $((g_1 \parallel g_2) \cdot g_3)$ that appears in the conclusion of the rule `ParStep` reflects the fact that g_1 and g_2 are composed in parallel, while g_3 comes in sequence after the join point.

The other two rules that define the parallel evaluation judgment, namely `ParVal` and `ParStep`, are the counterparts of the rules `SeqVal` and `SeqStep` from the sequential evaluation judgment, with the only difference that the rule `ParStep` includes one extra premise. This extra premise prevents the rule `ParStep` from being triggered on parallel pairs, which are meant to be treated by rule `ParPair`.

3.4 Heartbeat semantics

Figure 6. Heartbeat semantics: $m; n \Rightarrow \text{hb v}; g$. The judgement corresponds to the evaluation of a program
according to heartbeat scheduling. It expresses that the machine \(m \) terminates with the result value \(v \) and cost graph \(g \), starting from a state with \(n \) credits, indicating that \(n \) transitions were performed on the machine since the previous promotion.

In the heartbeat semantics, the evaluation of a parallel pair begins as in the fully-sequential semantics. During the execution of the left branch, either the right branch gets promoted and evaluates in parallel on a distinct machine; or it remains as an unpromoted frame in the stack, in which case it gets evaluated on the same machine as the one that processed the left branch.

The first two rules that define the heartbeat evaluation judgment, namely HBVal and HBStep, are the counterpart of the rules SeqVal and SeqStep from the sequential evaluation judgment. The rule HBStep performs a sequential transition and increments the number of credits by one unit, from \(n \) to \(n + 1 \). Sequential transitions are performed unless the time has come to perform a promotion, as captured by the first premise of HBStep: “\(n < N \) or \(v \rightarrow \text{promotable}(k) \)”.

The negation of this premise asserts that the stack \(k \) contains a frame of the form PAIRL(\(\square, _ _ _ _ \)) that could be promoted, and that at least \(N \) transitions were performed since the previous promotion.

When these two conditions are met, the rule HBPromote applies. In short, the rule takes the oldest PAIRL frame in the stack and promotes it by spawning the corresponding right branch into a separate abstract machine. It also creates another machine for evaluating the continuation that processes the result of that parallel pair, i.e., the join continuation.

Let us look more closely at rule HBPromote. Its conclusion asserts that the rule HBPromote applies to a configuration whose stack is of the form \(k_1 \leftarrow\ \text{PAIRL}(\square, e_2, \sigma') \rightarrow k_2 \), where \(\leftarrow\ \) denotes stack concatenation, and \(k_1 \) and \(k_2 \) denote two pieces of stacks (possibly empty). The second premise, \(\neg \text{promotable}(k_2) \), ensures that the frame PAIRL(\(\square, e_2, \sigma' \)) considered for promotion is the oldest promotable frame from the stack, that is, the frame corresponding to the outermost parallel pair. Promoting the oldest pair is necessary to minimize the span degradation, similarly to how one should steal the oldest frame in work-stealing.

The rule HBPromote contains three evaluation premises. The first one, with configuration \(\{ e \mid \sigma \mid \square \} \), describes what remains of the machine after the promotion takes place. The second one, with configuration \(\{ e_2 \mid \sigma' \mid \text{TOP} \} \), describes the evaluation of the right branch of the parallel pair that was promoted. The third one, with configuration \(\{ v_1, e_2 \mid \square \} \), describes the join continuation. The join continuation processes the pair made of the results produced by the two branches. Just like in the rule Rule ParPair, the cost graph involved in the rule HBPromote is of the form \((g_1 || g_2) \cdot g_3 \).

3.5 Formal results

Our correctness result asserts that the three semantics compute the same output values. This result is completely independent from the cost graphs. Thereafter, to hide cost graphs, we write \(m \Rightarrow_{\text{seq}} v \) as short for \(\exists g.(m \Rightarrow_{\text{seq}} v; g) \), and likewise for the two other evaluation judgments.

Theorem 1 (Correctness). For any machine \(m \) and value \(v \),
\[
(m \Rightarrow_{\text{seq}} v) \iff (m \Rightarrow_{\text{par}} v) \iff (m; 0 \Rightarrow_{\text{hb}} v).
\]

Our first efficiency result asserts that the overheads induced by heartbeat scheduling are bounded by a fraction of the work performed in the fully-sequential semantics.

Theorem 2 (Work bound). Assume: \(m \Rightarrow_{\text{seq}} v; g_s \). Then, there exists a cost graph \(g_h \) such that \(m; 0 \Rightarrow_{\text{hb}} v; g_h \) and
\[
\text{work}(g_h) \leq \left(1 + \frac{1}{N} \right) \cdot \text{work}(g_s).
\]

Proof. The proof is by induction on the sequential derivation. To prove the inequality, we need to generalize the statement of the theorem to deal with a nonzero number of credits. The generalized induction hypothesis has for conclusion \(m; n \Rightarrow_{\text{hb}} v; g_h \) with \(\text{work}(g_h) \leq \left(1 + \frac{1}{N} \right) \cdot \text{work}(g_s) + n \cdot \frac{1}{N} \). Once the induction is set up, the remainder of the proof is rather mechanical. We refer the reader to the Coq formalization for additional proof details. \(\square \)

Our second efficiency result asserts that the span increases at most by a multiplicative factor compared with the fully-sequential semantics.

Theorem 3 (Span bound). Assume: \(m \Rightarrow_{\text{par}} v; g_p \). Then, there exists a cost graph \(g_h \) such that \(m; 0 \Rightarrow_{\text{hb}} v; g_h \) and
\[
\text{span}(g_h) \leq \left(1 + \frac{1}{N} \right) \cdot \text{span}(g_p).
\]

Proof. The proof of the span bound is much trickier than that of the work bound. It proceeds by induction on the parallel derivation. Again, we generalize the induction hypothesis. It has for conclusion \(\{ e \mid \sigma \mid k \}; n \Rightarrow_{\text{hb}} v; g_h \) with
\[
\text{span}(g_h) \leq \left(1 + \frac{N}{1 + N} \right) \cdot \text{span}(g_p) - \text{if promotable}(k) \text{ then } \min(n, N) \text{ else } 0.
\]

Our proof uses as technical device an auxiliary semantics that sits halfway between the fully-parallel and heartbeat semantics. Interestingly, the proof critically relies on the fact that we systematically promote the oldest promotable frame, that is, the frame which corresponds to the outermost pair. Again, we refer the reader to the Coq proof for details. \(\square \)

4 Implementation

This section describes the reference system, one we will refer to as Heartbeat, that we implemented to test the practicality of heartbeat scheduling. Like many other lightweight-threading systems, such as TBB [34], Heartbeat begins by
launching one pthread per core. Each of these workers alternate between evaluating a lightweight thread and participating in the load balancing scheme. Heartbeat is agnostic to the load balancing algorithm—we discuss particular work-stealing-based implementations in Section 5.

The cactus stack data structure. A well-known problem in scheduling parallel computations is worst-case stack space usage: lost stack space can become problematic as a result of stacks being attached to suspended computations. A classic data structure addressing this problem is the so-called cactus stack data structure [30]. A cactus stack is essentially a parent-pointer tree representation of the call stack of the program in which branching points correspond to parallel fork points. For Heartbeat, we employ a classic optimization based on stacklets [27]. This representation essentially corresponds to small, contiguous regions of memory (e.g., of size 4k bytes). These stacklets enable cheap allocation of frames, avoiding their allocation on the heap.

Although it corresponds to the algorithmic solution to controlling space usage, one limitation of the cactus stack is that it requires a modified calling convention, a nonstarter for applications requiring interoperability with legacy third-party binaries. Alternative approaches have been proposed [38, 56], but it appears that one must either sacrifice binary interoperability, time bounds, or space bounds. We expect that the extension that Heartbeat uses to set up links between promotable frames could be adapted to a number of these alternative approaches.

We next explain why Heartbeat uses a doubly linked list between promotable frames. To implement promotion efficiently, we need constant-time access to the top-most promotable frame. Once this frame is promoted, we need to access the next one, and so on. Thus, at a minimum, we need a singly linked list between promotable frames, from top to bottom, i.e. starting from the oldest frames. Yet, at the same time, the execution of a thread pushes and pops frames at the bottom of its stack. In particular, it is possible that a promotable frame gets popped before it is promoted (e.g., the left branch of a pair terminates before the right branch gets promoted). Efficiently removing the frame from the singly linked list between promotable frames requires reverse pointers, hence the need for a doubly linked list. To represent this doubly linked list, promotable frames include a prev and a next pointer, using null to terminate the list. Setting up these two pointers adds a minor overhead compared with the setting up of the frame.

Implementation of the scheduler. To evaluate our scheduling algorithm, we developed a reference implementation that is based on an interpreter. Concretely, we write each of our benchmark programs as an abstract syntax tree (AST), whose leaves carry C++ functions describing the sequential blocks. At load time, the AST is flattened into a control flow graph that is ready to be executed by our interpreter. Of course, for use in production, compiler support would be desirable. We next describe the main features of our interpreter, focusing especially on the interactions with the cactus stack. Heartbeat exhibits features common to parallel schedulers. In particular, each worker features a main loop for executing ready threads, i.e. threads that have no pending dependencies. To track dependencies, each thread stores a join counter to count the number of pending dependencies and a pointer to its join thread. When it terminates, a thread decrements the join counter of its join thread. In the case that the join counter reaches zero, the join thread becomes ready and gets added to a pool of ready threads.

To implement the heartbeat promotion mechanism, we rely on a combination of software polling and querying of the hardware cycle counter. Querying the hardware counter amounts to reading a register. Software polling is used in a number of other scheduling techniques, such as lazy scheduling and private-deque work stealing [3, 20, 53]. The implementation of software polling is a well-studied problem, with both hardware and software solutions [21, 47]. However, hardware polling based on interrupts is delicate to implement at the resolution of the order of 10\(\mu\)s, but it may be possible given special hardware support. Fortunately, software polling can be implemented in an efficient manner via compiler (or manual) instrumentation of the code.

Given that Heartbeat is an interpreter, we implement polling in a simple way by inserting checks: (1) in between every sequential block being interpreted, (2) in between a fixed number of iterations for an innermost loop whose body does not trigger any parallel call, (3) after every iteration in other loops. For a production implementation of heartbeat scheduling, it should suffice to rely on one of the aforementioned solutions to polling.

In the remainder of this section, we describe the interactions between Heartbeat and the cactus stack. Each thread carries a code pointer and an instance of the cactus stack. Each cactus-stack instance consists of a pointer to the bottommost frame of the stack, a pointer to the next free byte in the stack, and the head and tail pointers of the doubly linked list of promotable frames. The heartbeat semantics initially performs machine transitions like the fully-sequential semantics (recall Section 3). Now, let us first describe the transitions involved in a non-parallel call. When it makes a function call, a thread pushes a frame on the current stack (possibly triggering the allocation of a new stacklet). When returning from the call, that frame gets popped. Eventually, the stack becomes empty, indicating that the thread has completed.

Before we explain the promotion transition, let us describe what would happened if our scheduler executed a parallel pair according to the fully-parallel semantics. In that case, the scheduler would immediately create two new threads. The first is a thread for left branch. This thread reuses the current stack. This stack is then altered with the write of
a null-pointer as parent-frame pointer in order to delimit the execution of the left branch. The second is a thread for the right branch. This thread is initialized with a fresh stack. The currently running thread is used to represent the join continuation, and as such its join counter is set to 2. This thread also carries the current stack, but note that this stack will be used only after the left branch completes.

In heartbeat scheduling, the evaluation of a parallel pair begins according to the fully-sequential semantics, pushing a frame in the stack to describe the right branch. Eventually, that frame might be subject to promotion. When this promotion happens, the scheduler creates two threads. The first thread is for the right branch, and uses a fresh stack. The second thread is for what remains of the left branch, whose execution has already begun. This thread captures the current stack, here again altered by nullifying the parent-frame pointer. The currently-running thread is reused to describe the join continuation, as described in the previous paragraph. In summary, the promotion process is similar to the eager creation of threads from the fully-parallel semantics, with one main difference: when a promotion occurs, the left-branch has already begun its execution. In addition to thread creation, a promotion operation also involves updating the head of the doubly linked list of promotable frames.

Native support for parallel loops. Finally, we describe, at a high level, our treatment of parallel loops. In theory, parallel loops can be encoded using fork-join, by creating a binary tree of threads. Past work gives this approach the name Eager Binary Splitting and identifies a number of limitations, such as manual tuning effort and poor portability across different inputs and hardware configurations [52].

Another possible approach is to introduce one frame for each parallel loop. While this approach would improve the situation, overheads might still be significant in the worst case. Consider, for example, a program featuring an outer loop whose body contains an inner parallel-loop that, on the input data provided, only runs for a couple iterations. In that case, each iteration of the outer loop would trigger the creation of a frame, yet would involve insufficient work to amortize the cost of that creation.

In Heartbeat, we chose to introduce frames for function calls only. Heartbeat provides dedicated support for the loop nests that may in function bodies. To describe a range of iterations to be performed within a loop nest, we use loop descriptors (a.k.a. task descriptors for nested loops). A loop descriptor consists of: (1) a code pointer, (2) for each loop enclosing that code pointer, the range of remaining iterations to be processed for these loops, and (3) a pointer to the frame storing the local variables involved in that code fragment.

For a promotion operation, the scheduler considers the outermost parallel loop with remaining iterations (in addition to the current iteration). It splits the range of that loop in half, leading to the creation of an independent loop descriptor describing the upper half of the split range. In addition, the scheduler creates one join thread per loop instance, but creates these threads only when the first promotion occurs. The exact implementation details are specific to Heartbeat and the fact that it is an interpreter.

5 Empirical evaluation
We present a study of ten benchmarks taken from the Problem Based Benchmark Suite (PBBS) [8]. The benchmarks represent state-of-the-art algorithms for multicore architectures, solving problems on sequences, on strings, on graphs, and in geometry and graphics. The irregular parallelism exhibited by the benchmarks makes granularity control particularly challenging.

The PBBS codes were implemented using Cilk Plus, a parallel version of C++ in which a few Cilk keywords are used as hints to express opportunities parallelism. Although it was written in the high-level, idiomatic style of Cilk Plus, the authors’ original code relies on a number of manual techniques to control granularity, with careful engineering to select the techniques and hand-tune threshold settings. In particular, three main techniques are involved:

- A number of data-parallel loops were parallelized by systematically splitting input sequences into fixed size blocks of 2048 items. This approach is used throughout the PBBS sequence library and is consequently used extensively by all PBBS benchmarks. It aims at ensuring minimal granularity control, and works well under the assumption that items in the sequence are small-sized and can be processed in a short amount of time. We replaced all such loops with Heartbeat’s parallel-loop construct.

- In many cases outside of the sequence library, parallel loops were expressed using Cilk parallel for-loops. The algorithm underlying Cilk for-loops uses a heuristic that splits the loop range into \(\min(8P, 2048) \) blocks, where \(P \) is the number of cores. This heuristic ensures that sufficient parallelism is created to feed all \(P \) cores. However, in an already-parallel context, it might end up creating an overwhelming number of threads. Again, we replaced all such loops with Heartbeat’s native parallel loop construct.

- A number of loops were forced to always make one spawn per iteration, by forcing the grain size to be 1. Doing so is crucial in situations where any nontrivial grain size may dramatically reduce parallelism, for example, in the case of an outermost parallel loop with potentially few iterations. We replaced such loops with Heartbeat’s parallel looping construct, simply dropping the grain size annotation.

In summary, the PBBS authors’ approach involves careful selection of granularity-control techniques. In contrast, the heartbeat approach relies on a single, uniform method thereby freeing the application programmer from dealing with granularity control.
5.1 Benchmarking environment

Input data and baseline setup. Our experiments use much of the same input data as was used in the original PBBS study [8], as well as some non-synthetic inputs that we added. Owing to space limitations, we summarize the input data in a technical appendix. We use as baselines for each benchmark the authors’ original code. This code was tuned by the authors offline, on a collection of inputs, using a test machine similar to ours, and using GCC, like we did.

Hardware and software environment. We used an Intel machine with 40 cores, featuring four 10-core Intel E7-4870 chips, at 2.4GHz, with 32Kb of L1 and 256Kb L2 cache per core, 30Mb of L3 cache per chip, and 32GB RAM, and runs Ubuntu Linux kernel v3.13.0-66-generic. We compiled the code using GCC (version 6.3, options -02 -march=native), using for PBBS Cilk Plus extensions (option -fcilkplus). Parallel runs involve a little bit of noise (with standard deviation usually around 3% to 5%). Thus for each data point we report the average over 30 runs.

We have also run our experiments on a 48-core AMD machine; the results—not shown, due to space limitation—are very similar to the ones presented throughout this section.

Load balancing. Cilk relies on work stealing implemented with concurrent deques [17, 25]. In contrast, Heartbeat currently supports three load-balancing algorithms: work stealing with concurrent deques, work stealing with private deques (as described in [3]), as well as a mixed variant that involves both a concurrent cell for storing the top-most deque item and a private deque for storing all other items. Preliminary experiments suggest that the three variants give similar results, with a slight advantage for the mixed variant of work stealing. For this reason, we benchmark Heartbeat using this mixed variant.

Setting for the parameter N. Recall that the parameter N controls the pace at which promotions are performed in heartbeat scheduling. We illustrate in Figure 7 the effect of the choice of N through two examples that are representative of what we have observed over a range of benchmarks.

As the figure shows, values of N below 10μs are suboptimal due to significant parallelism overheads (overparallelization). At the same time, values of N above 100μs are also suboptimal, due to poor utilization (underparallelization). The exact point at which performance degrades for large values of N depend on the benchmark considered, but all programs ultimately suffer from too-large values of N. Somewhere in between, for values of N close to 30μs, we find the sweet spot that we seek. The existence of a sweet spot, as predicted by the theoretical analysis, enables Heartbeat to deliver bounded overheads (e.g., 3% or 5%), while preserving as much parallelism as possible.

As explained in Section 2, the value of N is a system-wide setting that should be set once-and-for-all to a multiple of the value of τ, which denotes the cost of thread creation. For example, to ensure overheads below 5%, it suffices to set the value of N to 20τ. We next describe a simple protocol for measuring the value of τ on a given architecture. Although this protocol requires performing measures on one particular benchmark program, all benchmark programs should yield similar estimates.

The protocol for measuring τ requires performing single-core runs of a parallel program. First, execute the program with a very large value of N (e.g., 10^7 μs), so as to generate zero (or few) threads, and measure the execution time T. Then, execute the same program with a small value of N for which overheads are significant (e.g., 1μs). For that run, let T' denote the execution time, and let C denote the number of threads created. The ratio \(\frac{T - T'}{C} \) gives a good estimate of the cost of creating one thread.

On our machine, following this protocol on several benchmark programs, we systematically measured values for τ between 1.2μs and 1.9μs, with an average close to 1.5μs. Hence, to target overheads below 5%, we set N = 30μs.

5.2 Benchmark results

Overheads of the Heartbeat interpreter. We implemented Heartbeat as an interpreter for basic blocks, and thus we pay a cost for interpretive overhead. To evaluate these overheads, we compare the sequential elision of the original PBBS program (using Cilk) and its Heartbeat counterpart. The sequential elision is a mode in which no parallel threads are created. More precisely, a sequential elision in Cilk replaces parallel function calls with conventional calls: (cilk_spawn and cilk_sync become no-ops) and the parallel for-loop cilk_for becomes the ordinary, sequential for. Regarding
<table>
<thead>
<tr>
<th>Application/input</th>
<th>1-core execution (s)</th>
<th>1-core execution (relative to elision)</th>
<th>40-core execution (s)</th>
<th>40-core execution (relative to elision)</th>
<th>Idle time</th>
<th>Nb threads</th>
</tr>
</thead>
<tbody>
<tr>
<td>radixsort</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>random</td>
<td>3.39</td>
<td>+8.6%</td>
<td>+0.5%</td>
<td>+1.5%</td>
<td>0.21</td>
<td>-8.4%</td>
</tr>
<tr>
<td>exponential</td>
<td>3.46</td>
<td>+6.9%</td>
<td>+0.1%</td>
<td>+2.0%</td>
<td>0.20</td>
<td>-9.0%</td>
</tr>
<tr>
<td>random pair</td>
<td>5.63</td>
<td>+5.0%</td>
<td>+46.3%</td>
<td>+1.7%</td>
<td>0.51</td>
<td>-24.8%</td>
</tr>
<tr>
<td>samplesort</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>random</td>
<td>22.77</td>
<td>+43.5%</td>
<td>+64.9%</td>
<td>+1.8%</td>
<td>1.21</td>
<td>-14.6%</td>
</tr>
<tr>
<td>exponential</td>
<td>16.48</td>
<td>+34.8%</td>
<td>+59.4%</td>
<td>+1.3%</td>
<td>0.91</td>
<td>-18.9%</td>
</tr>
<tr>
<td>almost sorted</td>
<td>7.55</td>
<td>+108.3%</td>
<td>+137.4%</td>
<td>+1.9%</td>
<td>0.71</td>
<td>-17.9%</td>
</tr>
<tr>
<td>suffixarray</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dna</td>
<td>23.62</td>
<td>+1.5%</td>
<td>+22.7%</td>
<td>+3.1%</td>
<td>1.33</td>
<td>-10.4%</td>
</tr>
<tr>
<td>etext</td>
<td>85.96</td>
<td>+3.5%</td>
<td>+25.5%</td>
<td>+2.6%</td>
<td>4.08</td>
<td>-6.2%</td>
</tr>
<tr>
<td>wikisamp</td>
<td>75.90</td>
<td>+2.4%</td>
<td>+21.4%</td>
<td>+2.7%</td>
<td>3.65</td>
<td>-5.9%</td>
</tr>
<tr>
<td>removeduplicates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>random</td>
<td>10.12</td>
<td>+33.4%</td>
<td>+11.5%</td>
<td>+3.6%</td>
<td>0.48</td>
<td>+9.5%</td>
</tr>
<tr>
<td>bounded random</td>
<td>2.97</td>
<td>+15.2%</td>
<td>-3.1%</td>
<td>-0.2%</td>
<td>0.22</td>
<td>-16.5%</td>
</tr>
<tr>
<td>exponential</td>
<td>7.08</td>
<td>+8.2%</td>
<td>+0.4%</td>
<td>+3.0%</td>
<td>0.38</td>
<td>-7.4%</td>
</tr>
<tr>
<td>string trigrams</td>
<td>11.27</td>
<td>+0.0%</td>
<td>-0.1%</td>
<td>+2.1%</td>
<td>0.54</td>
<td>-25.1%</td>
</tr>
<tr>
<td>convexhull</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in circle</td>
<td>14.27</td>
<td>-0.8%</td>
<td>-1.7%</td>
<td>+2.8%</td>
<td>0.69</td>
<td>-6.5%</td>
</tr>
<tr>
<td>kuzmin</td>
<td>8.65</td>
<td>+5.0%</td>
<td>-0.5%</td>
<td>-2.7%</td>
<td>0.48</td>
<td>-16.4%</td>
</tr>
<tr>
<td>on circle</td>
<td>10.77</td>
<td>-1.1%</td>
<td>+192.3%</td>
<td>+4.3%</td>
<td>1.35</td>
<td>-63.9%</td>
</tr>
<tr>
<td>nearestneighbors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kuzmin</td>
<td>26.66</td>
<td>+17.8%</td>
<td>+10.7%</td>
<td>+4.3%</td>
<td>1.35</td>
<td>+0.9%</td>
</tr>
<tr>
<td>plummer</td>
<td>32.80</td>
<td>+14.0%</td>
<td>+8.6%</td>
<td>+4.7%</td>
<td>2.35</td>
<td>-12.9%</td>
</tr>
<tr>
<td>delaunay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in square</td>
<td>90.47</td>
<td>-2.3%</td>
<td>-1.1%</td>
<td>+1.5%</td>
<td>3.53</td>
<td>+5.7%</td>
</tr>
<tr>
<td>kuzmin</td>
<td>97.80</td>
<td>-1.0%</td>
<td>+0.3%</td>
<td>+2.7%</td>
<td>4.13</td>
<td>+6.1%</td>
</tr>
<tr>
<td>raycast</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>happy</td>
<td>11.15</td>
<td>+8.9%</td>
<td>+6.1%</td>
<td>+3.3%</td>
<td>0.48</td>
<td>+1.3%</td>
</tr>
<tr>
<td>xyzrgb</td>
<td>359.79</td>
<td>+1.2%</td>
<td>+0.7%</td>
<td>+0.7%</td>
<td>9.25</td>
<td>+0.9%</td>
</tr>
<tr>
<td>mst</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cube</td>
<td>49.46</td>
<td>+17.0%</td>
<td>+25.7%</td>
<td>+1.7%</td>
<td>2.57</td>
<td>+0.0%</td>
</tr>
<tr>
<td>rMat24</td>
<td>44.11</td>
<td>+14.1%</td>
<td>+22.5%</td>
<td>+1.5%</td>
<td>2.40</td>
<td>-1.8%</td>
</tr>
<tr>
<td>spanning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cube</td>
<td>13.74</td>
<td>+8.5%</td>
<td>+3.2%</td>
<td>+2.0%</td>
<td>0.68</td>
<td>-11.9%</td>
</tr>
<tr>
<td>rMat24</td>
<td>8.78</td>
<td>+8.8%</td>
<td>+3.4%</td>
<td>+2.1%</td>
<td>0.50</td>
<td>-7.5%</td>
</tr>
</tbody>
</table>

Figure 8. Benchmark results. Column 3 gives an estimate of the interpretive overhead of Heartbeat. Column 4 gives a lower bound on the overheads of the original PBBS code, with figures relative to column 2. Column 5 gives an estimate of the thread creation overheads in Heartbeat, with figures relative to column 3. In the 40-core section, column 6 gives PBBS execution time, and column 7 gives the Heartbeat figure relative to column 6. Negative figures indicate that Heartbeat is performing better. Columns 8 and 9 give the ratios between Heartbeat and PBBS for two measures: total idle time and number of threads created.

Heartbeat, we simply set a flag to disable promotion. Concretely, Heartbeat’s frames remain in the stack and never get promoted, and the innermost parallel loops in the benchmark codes are turned into purely sequential loops.

Column 3 from Figure 8 shows the relative performance difference between Heartbeat sequential elision and PBBS sequential elision. Figures vary greatly across the rows. Indeed, the interpretive overheads depend largely on the contents of the basic block containing the critical loops. In fact, when
there are several such critical loops, the overheads depend on the extent to which each critical loop is being exercised by the input data. Thus, even for the same benchmark program, the interpretive overheads may vary significantly with the input data (as, e.g., for sample-sort).

For most benchmarks, the overheads are below 20%. (Only sample-sort and one instance of remove-duplicates have greater interpretive overheads.) Such limited interpretive overheads are achieved thanks to the fact that the compiler is able to optimize every basic block independently of our interpreter. Overall, we believe that the performance penalty is small enough to draw a meaningful comparison against the original Cilk programs.

Overheads of thread creation. We next try to evaluate parallelism overheads both in PBBS and in Heartbeat. To evaluate the overheads of thread creation in the original PBBS codes, we compare the execution of the sequential elision of each program against the single-core execution of the Cilk parallel binary. Whereas the former eliminates all spawn-sync constructs and sequentializes all loops, the latter is slowed down by compiler instrumentation, including thread creation. The estimation of overheads in Cilk may be incomplete because the Cilk system in some places detects at runtime that there is only one active worker thread in the system. Nevertheless, the comparison should give us a lower bound on the parallelism overheads affecting Cilk programs. Column 4 from Figure 8 shows that these overheads can be significant in some benchmarks, in 10 cases (out of 28) over 25%, and in 2 cases over 100%.

To evaluate the overheads of thread creation in Heartbeat, we compare in a similar fashion the sequential elision against the original PBBS codes. Thus, Heartbeat delivers a runtime-based approach that makes unnecessary the manual selection of granularity control technique and the manual tuning involved in the original PBBS programs. Replacing the Heartbeat interpreter with a compiler-based implementation could only improve the execution time.

To gain further insight on the parallel run time differences between PBBS and Heartbeat programs, we included two additional columns in Figure 8. Column 8 shows the ratio between idle time (counting periods during which workers are out of work) in Heartbeat and idle time in PBBS. The figures show that the idle time is of the same order of magnitude. Column 9 shows the ratio between the number of threads created (i.e. the number of promotions) in Heartbeat and the number of threads created in PBBS. There, figures show that Heartbeat creates fewer threads, in many cases at least one order magnitude fewer. Taken together, these last two columns indicate that Heartbeat is able to achieve similar utilization despite generating manyfold fewer threads, and as a result, the Heartbeat running time often benefits from the correspondingly decreased overheads.

6 Related Work

Formal bounds for schedulers. Brent’s theorem [14] gives a bound for scheduling a parallel program with work W and span S on P processors: any greedy scheduler executes the program in at most $\frac{W}{P} + S$ time. A scheduler is greedy if no processor is left idle while there are ready threads.

In groundbreaking work, Blumofe and Leiserson [13] give a theoretical analysis of work stealing, a nearly greedy scheduling algorithm that operates in a decentralized fashion. They give bounds on time ($\frac{W}{P} + O(S)$), space usage, and number of steals, for fully-strict parallel programs. These results were subsequently generalized to broader classes of programs. Agarwal et. al [5] prove space bounds for terminally strict programs. Arora et al. [7] prove time and steal bounds for general parallelism (including futures), but no space bounds. Spoonhower et al. [50] bound the number of deviations, a generalized measure of scheduling overhead, for a work-stealing scheduler executing parallel futures. Lee et al. [37] prove time and space bounds for fully-strict programs extended with a restricted form of pipelining.

The aforementioned line of work assumes that spawning a thread has unit cost. To our knowledge, there have been few attempts to prove bounds for schedulers formally taking into account the overheads of thread creation.

Tzannes et al. propose lazy scheduling, a scheduling technique where the creation of parallel threads is guided by demand for parallel work [53]. That demand is estimated by observing the occupancy of the local deque. This heuristic

\[\text{Because utilization in these benchmarks is generally between 80% and 99%, the total idle time represents less than 20% of the total execution time, thus a 20% change in idle time would affect the execution time by less than 4%}.\]
can fail and sometimes increase the span significantly, as remarked by Tzannes et al. The authors give an upper bound execution time, but for the case of a single parallel loop taken in isolation, not the whole program.

The oracle-guided scheduling paper by Acar et al. [4] considers, like us, a model where the cost of thread creation is an explicit parameter. Under a few assumptions on the shape of the computation graph, they are able to establish work and span bounds for nested parallel programs. As explained in the introduction, oracle-guided scheduling does not apply to programs whose work load cannot be estimated in advance.

Taming overheads of thread creation. To reduce the overheads, one may either reduce the number of threads created, or reduce the cost of creating one thread. The baseline, naïve approach is to eagerly create, for each parallel pair, a thread for the right branch and a thread for the join continuation.

Cilk’s clone optimization [25] aims at avoiding the cost of executing these two threads in the (most-frequent) case where the right branch does not get stolen. In such a case, an optimized version of the code may be executed, reusing the current stack and avoiding a synchronization operation before executing the join continuation. This optimization is driven by the work-first principle [25]: given that the number of steals is much less than the number of threads, one should place as much burden as possible on the steals and minimize the overheads associated with local work.

Tzannes et al. [53] observe that one may save some overheads by keeping the thread describing the right branch in a processor-local deque, as long as the main work stealing deque is nonempty (or of sufficient cardinality). Using such a localdeque extension significantly decreases the number of memory fence and atomic operations required.

Going further, one could argue that, based on the work-first principle, the scheduler should not even invest the effort of allocating a thread object for the right branch and the join, as long as there is no demand for such a thread, that is, as long as the work stealing deque already contains enough many threads. Implementing this approach requires support for on-demand promotion of stack frames into threads, similar to what our Heartbeat implementation provides. Yet, alone, on-demand promotion might suffer from prohibitive overheads in case the steal requests are numerous, as it may happen in programs with non-small span [53].

Granularity control using cost estimation. One way to tame the total overheads of thread creation is to control the granularity of threads, ensuring that each thread created holds a not-too-small amount of work. Perhaps the oldest technique for granularity control is to use a manual, programmer-inserted “cut-off” condition, that switches from a parallel to a sequential mode of execution. Cilk programmers sometimes annotate parallel cilk_for loops to batch several parallel iterations into a sequential unit of work—the exact batching factor can be made parametric in the number of processors. Iwasaki et al. present a static analysis technique for synthesizing cut-offs for divide-and-conquer functions in Cilk-style programs [35]. Such granularity control, while pragmatic, is necessarily brittle in the presence of irregular control-flow.

In contrast to static approaches, dynamic approaches may exploit valuable information depending on the input data. Duran et al. [19] propose a method for controlling granularity in nested parallel loops, relying on profiling information collected at runtime. For recursive algorithms, older work [45, 55] has proposed to make sequentialization decisions based on the height or depth of the recursion tree. Yet, as Iwasaki et al. point out [35], making irrevocable sequentialization decisions may significantly harm parallelism.

The only way to ensure that sequentializing a subcomputation will not harm parallelism in the face of irregular workload is to have some guarantee that sequentialized subcomputations hold no more than a certain amount of work. Lopez et al. [40] propose, in the context of logic programming, an approach by which the programmer annotates functions with asymptotic cost annotations, which are evaluated at runtime for making sequentialization decisions. However, using the asymptotic cost alone is an overly simplistic method, because, on modern processors, execution time depends heavily on effects of caching, pipelining, etc.

We have already discussed subsequent work by Acar et al. [4] on oracle-guided scheduling. It improves on the aforementioned approach by combining the result of asymptotic cost functions with run-time measurements used to evaluate constant factors. Its formal bounds take into account the overheads of making time predictions, as well as the gap between predicted and effective values of the execution time.

7 Conclusion

In the current state of the art, writing parallel programs that run efficiently on real machines requires extensive optimization and tuning so that the overheads of parallelism can be reduced below acceptable limits. The primary reason is that the scheduling techniques that state-of-the-art parallel programming languages and systems rely on, such as work stealing, do not provide tight theoretical or practical bounds on the cost of creating and destroying threads. In this paper, we show that such bounds can be achieved for all nested parallel programs written in the popular fork-join model, both in theory and in practice. To this end we present an algorithm that controls the overheads of thread creation by restricting it to occur at periodic intervals, in effect, the heartbeat of the computation. The insight is to promote, at each beat, a stack frame that holds potential for parallelism to a thread.

We specify the technique by formalizing it as an abstract-machine semantics and proving two key results: overheads are always bounded by a small fraction of the sequential
work, and the amount of parallelism is not decreased asymptotically. We present a prototype implementation and evaluate it by comparing to hand-optimized codes from the PBBS benchmarking suite. The experiments show that, by using heartbeat scheduling, we can eliminate from the codes a variety of tuning parameters and heuristics, while still competing well with the hand-optimized codes. The experiments show that, compared to hand-tuned codes, heartbeat scheduling is able to reduce the number of threads, sometimes by 90%, and do so without unnecessarily reducing parallelism.

References

