
Improving Type Error Messages in OCaml

Arthur Charguéraud
Inria

& LRI, Université Paris Sud, CNRS
arthur.chargueraud@inria.fr

Abstract
Cryptic type error messages are a major obstacle to learning
OCaml. In many cases, error messages cannot be interpreted with-
out a sufficiently-precise model of the type inference algorithm.
However, improving type error messages in ML is a hard problem.
This problem has received quite a bit of attention over the past two
decades, and many different strategies have been considered. Un-
fortunately, none of these strategies has so far proved its ability to
scale up to a full-blown ML implementation.

Perhaps we should turn the problem around: given that we need
a typing algorithm that can be implemented within the OCaml
compiler and that scales up to the full-blown language, what can
be done to improve error messages? In this work, we show that,
with just a few hundred lines of code, we can integrate a fallback
typing algorithm producing more helpful messages. Our work is
implemented in the form of a patch to the OCaml compiler. This
patch should benefit not just to beginners, but also to experienced
programs developing large-scale OCaml programs.

1. Introduction
Will the OCaml community remain stuck forever with error mes-
sages that make many potential adopters of OCaml run away before
they really get a chance to appreciate the language?

We believe that OCaml really deserves better parsing and typing
error messages. In this work, we focus on typing errors. We show
that, with a small number of carefully-crafted changes to the order
in which unifications are performed by the type inference engine,
we are able to generate messages that, we argue, provide the user
with much more useful information for locating and fixing the error.

The main features of our approach are:

− improved error messages for function applications; in particular,
better treatment of errors involving higher-order functions (e.g.,
List.fold), and arithmetic operators (e.g., ‘+’ in place of ‘+.’,
or ‘-1’ not surrounded by parentheses);

− improved error messages for subexpressions that do not have the
type expected by the language construction in which they appear,
e.g., a while loop condition that does not have type bool;

− improved error messages for incompatible branches in condi-
tional and pattern matching constructs;

− improved error messages for missing ‘()’ argument, missing ‘!’
operator, and missing ‘rec’ keyword.

In Section 2, we present these features in reverse order, so as
to start with the simpler ones. In each case, we explain in a few
lines the idea of the algorithm, and then illustrate its application
on concrete examples. In particular, these examples cover error
patterns that arises frequently in code written by OCaml beginners.

Our approach is implemented as a patch to the OCaml com-
piler. The patched compiler runs exactly like the original compiler,
excepts when it encounters a top-level definition that fails to type-
check. If the typing of the top-level definition concerned involves
GADTs, then we simply display the traditional error message (be-
cause our current implementation does not yet support improved
messages for errors involving GADTs). Otherwise, we type-check
again the same top-level definition using our modified algorithm,
and report a possibly-different error message.

Thanks to this strategy, our approach scales up to large and com-
plex programs. For example, we tested the ability of our patched
compiler to report improved typing error messages for errors arti-
ficially introduced in functions of several hundred lines located in
the middle of the implementation of the OCaml type-checker itself.

2. Algorithm
Message for missing ‘()’. When reaching a unification error
between a type of the form “unit -> t” and a type u that does not
unify with an arrow type, we add to the error message the sentence:
“You probably forgot to provide ‘()’ as argument somewhere.”

Example 1 from the appendix shows a program containing a call
to read_int that is missing its argument. The code is followed by
error message produced by the original OCaml compiler, then that
produced by our patched compiler. (Note that the main body of the
error message, explaining the failure to type-check the application,
is also modified; we will explain this change later, when discussing
typing of applications.)

Example 2 shows another instance of a missing unit argument,
this time on a call to print_newline. Here, the main body of the
error corresponds to the strict-sequence check, which we activate
by default.1 Note that, in this particular case, we remove the word
“somewhere” because we know that the location reported with the
error is the appropriate one.

Message for missing ‘!’. When reaching a unification error be-
tween a type of the form “t ref” and a type u that does not unify
with it, we add to the error message the sentence: “You probably
forgot a ‘!’ operator somewhere.”

Example 3 illustrates a call to “print_int r”, where r is a
reference. Example 4 shows that it is important to leave the word
“somewhere” in the message, because if the expression of type
“int ref” is the result of a function call, then the type-checker
cannot guess whether the ‘!’ operator is missing in the function
definition or at the call site.

Message for missing ‘rec’. When traversing non-recursive let-
bindings, we add the bound names as ghost names to the environ-

1 OCaml with strict-sequence flag activated gives the message: “This ex-
pression has type unit -> unit but an expression was expected of type
unit.” However, beginners, when using print_newline in their first
OCaml program, do not yet know anything about the arrow type.

1 2014/5/19

ment, so that if we later obtain an “unbound value” error, we are
able to test if the variable name would have been in scope if it had
been bound by a let rec instead of being bound by a simple let;
if so, we add the message: “You are probably missing the ‘rec’ key-
word on line n.”. Example 5 illustrates such a scenario.

Message for subexpressions of language constructs. If a lan-
guage construct expects a subexpression to be of a given type (e.g.,
loop conditions should have type bool) but the subexpression does
not have this type, then we produce a specific error-message, e.g.,
“This expression is the condition of a while loop, so it should have
type bool, but it has type foo.”

Example 6 provides an example for the case of a while loop
condition. Example 7 provides an example of a conditional missing
its “else” branch. By the way, observe the amazing error message
produced by the original OCaml type-checker: “The constructor ::
does not belong to type unit.”

Message for ill-typed applications. To type-check a conditional
or a pattern matching, we first type-check each of the branches in-
dependently (at least, reasonably independently, as explained fur-
ther), then we unify the types of the branches one by one, and at the
very end we unify the type of the branches with the expected type
of the expression (if any). In case of a unification failure, we report
the types of the branches as they were computed before we tried to
unify them.2

The goal here is to limit the effects of the left-to-right bias,
which is significant when we unify the branches one by one in
order. In particular, we want to avoid focusing the programmer’s
attention to one particular branch while the error may very well be
located in a previous branch. Example 8 shows a conditional whose
branches return values of types int and float. Example 9 shows
a similar situation in a pattern matching. Example 10 presents
a more subtle program that illustrates how, with the traditional
type-checker, information gets propagated across the branches. Our
modified algorithm avoids this kind of propagation.

Example 11 shows that our approach nevertheless allows for
some amount of side-effects between the typing of the different
branches. The variable x involved has no fixed type when starting
to type-check the pattern-matching. Its type gets unified with int in
the first branch, and therefore fails to unify with float in the second
branch. We believe that this remaining left-to-right bias is less of
a concern, because it typically only involves a variable, which is
blamed by the error message. So, if the programmer provides a type
annotation for the variable that does not get assigned the expected
type, she should obtain in the next error the precise location of the
source of the problem.

Message for incompatible branches. To type-check an applica-
tion, we compute the most-general type of the function and of each
of the arguments provided, independently. Then, we try to unify
the types. If this unification process fails, we locate the error on
the entire application, and we report a message of the form: “The
function ‘foo’ expects N arguments of type ‘bla’ and ‘bla’, but it is
given M arguments of type ‘bla’ and ‘bla’ and ‘bla’.”,

Here again, the goal is to limit the effects of the left-to-right
bias, and to avoid the programmer focusing its attention on one
particular argument that may not be the one to blame. We argue for
the benefits of the new error messages through several examples.
Example 12 illustrates the use of ‘+’ in place of ‘+.’. The new

2 Remark: in order to properly report error messages, we need to save
copy of the types of the branches before starting to unify these types.
We implement those copy by computing the type scheme associated with
the types involved before unifying them. This generalization operation is
efficiently implemented; it is basically equivalent to naming each of the
arguments using a let-binding before constructing the application.

message makes it clear that ‘+’ operates on int and not on float.
Example 13 illustrates a call of a function on ‘-1’ not surrounded
by parenthesis. The new message makes it clear that ‘-’ is treated
as a binary operator and not a unary one.

Example 14 illustrates how the new error message helps detect-
ing swapped arguments in a call to Array.fold_left. Example 15
shows how the new error message helps detecting swapped argu-
ments in the function passed as argument to Array.fold_left. By
the way, note the cryptic message produced by the original type-
checker: “The type variable ’a occurs inside ’a list”. Example 16
presents a type error on a call to fold_left, due to a mismatch
between the type of the function and the type of the list provided.
Last but not least, Example 17 illustrates that our implementation
smoothly extends to optional arguments.

Implementation. Our implementation is relatively lightweight.
We needed only 6 lines of code to improve messages for ‘()’,
also 6 lines for ‘!’, 20 lines for missing ‘rec’. For incompatible
branches, we needed 50 new lines of code, plus minor patching of
100 existing lines of code. For applications, we needed 100 new
lines of code, plus minor patching of 200 existing lines of code.

3. Related work
There is a large literature on the production of better typing er-
rors for ML, including recent publications in conferences such as
ICFP and POPL, and including rather unexpected method —e.g.,
the use of search procedures for finding similar programs that do
type-check [4]. Heeren’s PhD thesis [2], entitled “Top Quality Type
Error Messages”, summarizes the main possible directions to pro-
ducing good error messages: (1) tracing everything that contributes
to the error; this approach, however, leads to very verbose mes-
sages; (2) attempting to infer the most likely cause of the error;
this approach, however, is problematic when it fails to guess right,
(3) modifying the unification algorithm; this approach, however,
requires finding a new algorithm.

Regarding the third direction, several researchers have argued
that a very central ingredient for achieving intuitive error messages
is the elimination of the left-to-right bias associated the way unifi-
cations are traditionally performed. To avoid the left-to-right bias,
Bernstein and Stark [1], and Yang [6] propose to type subterms
bottom-up, returning a type for the term and all of its free vari-
ables, and to then try to unify the types of the free variables. How-
ever, such approaches that involve typing fully-open terms tend
to be fairly impractical. McAdam [5] proposes a technique that is
able to eliminate all left-to-right bias without going as far as typing
fully-open terms. McAdam’s approach consists of typing subterms
bottom-up, returning a type and a substitution for flexible type vari-
ables, and then trying to unify the substitutions involved.

In our work, we also type subterms bottom-up, and these sub-
terms are processed relatively independently. We thereby remove
most of the left-to-right bias, even though, as illustrated by Exam-
ple 11, there remains a few cases where unification leads to side-
effects visible between subterms. We find our approach to be a good
compromise between the aim to treat subterms independently, and
the need for simplicity and efficiency. Also, our algorithm can be
implemented easily, reusing all the data structures and infrastruc-
ture already existing in the OCaml compiler.

The possibility of performing unifications in different orders is
also discussed in by Li and Yi [3], who show how several existing
algorithms (W , SML/NJ’s algorithm, OCaml’s algorithm, H,M)
can be viewed as particular instantiations of a general algorithm.
However, Li and Yi do not discuss which instantiations might be
best suited for error reporting, and do not discuss the treatment of
n-ary applications and pattern matching.

2 2014/5/19

4. Conclusion
Our work shows that, with reasonable effort, we are able to sig-
nificantly improve type error messages generated by the OCaml
compiler. Our approach integrates within the full-blown language,
and scales up to large-scale programs with virtually no overhead.
While our work has been mainly motivated by OCaml, we believe
that our approach to reporting errors for applications and branching
constructs could be similarly applied in other functional program-
ming languages, such as SML, Haskell, or Coq.

References
[1] Karen L. Bernstein and Eugene W. Stark. Debugging type errors. Tech-

nical report, State University of New York at Stony Brook, Novem-
ber 08 1995.

[2] Bastiaan Heeren et al. Top quality type error messages. Utrecht
University, 2005.

[3] Oukseh Lee and Kwangkeun Yi. A generalized let-polymorphic type in-
ference algorithm. Technical report, Technical Memorandum ROPAS-
2000-5, Research on Program Analysis System, Korea Advanced Insti-
tute of Science and Technology, 2000.

[4] Benjamin S. Lerner, Matthew Flower, Dan Grossman, and Craig Cham-
bers. Searching for type-error messages. In Proceedings of the 2007
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’07, pages 425–434. ACM, 2007.

[5] Bruce J. McAdam. On the unification of substitutions in type inference.
In Kevin Hammond, Anthony J. T. Davie, and Chris Clack, editors,
Implementation of Functional Languages (IFL’98), volume 1595 of
Lecture Notes in Computer Science, pages 139–154. Springer-Verlag,
September 1998.

[6] Jun Yang. Explaining type errors by finding the source of a type
conflict. In Philip W. Trinder, Greg Michaelson, and Hans-Wolfgang
Loidl, editors, Scottish Functional Programming Workshop, volume 1
of Trends in Functional Programming, pages 59–67. Intellect, 1999.

A. Appendix
The remaining of the paper contains the examples described in
Section 2. All these examples have been processed by our patched
compiler, which is publicly available and can be tested using the
following commands.

git clone https://github.com/charguer/ocaml.git
cd ocaml
./configure && make world.opt
./ocamlc.opt -I stdlib -easy foo.ml

***************************** Example 1 *********************************
let x = read_int in (* missing unit argument *)
print_int x
------------------------------ old error --------------------------------
File "examples/example_missing_unit_readint.ml", line 2, characters 10-11:
Error: This expression has type unit -> int

but an expression was expected of type int.
------------------------------ new error --------------------------------
File "examples/example_missing_unit_readint.ml", line 2, characters 0-9:
Error: The function `print_int' expects one argument of type [int],

but it is given one argument of type [unit -> int].
You probably forgot to provide `()' as argument somewhere.

***************************** Example 2 *********************************
let _ =

print_int 3;
print_newline; (* missing unit argument *)
print_int 5

------------------------------ old error --------------------------------
File "examples/example_missing_unit_newline.ml", line 3, characters 3-16:
Warning 5: this function application is partial,
maybe some arguments are missing.
------------------------------ new error --------------------------------
File "examples/example_missing_unit_newline.ml", line 3, characters 3-16:
Error: This expression is followed by a semi-column, so it should have type

[unit] but it has type [unit -> unit].
You probably forgot to provide `()' as argument.

***************************** Example 3 *********************************
let r = ref 1 in
print_int r (* should be [!r] *)
------------------------------ old error --------------------------------
File "examples/example_ref_missing_bang.ml", line 2, characters 10-11:
Error: This expression has type int ref

but an expression was expected of type int.
------------------------------ new error --------------------------------
File "examples/example_ref_missing_bang.ml", line 2, characters 0-9:
Error: The function `print_int' expects one argument of type [int],

but it is given one argument of type [int ref].
You probably forgot a `!' operator somewhere.

***************************** Example 4 *********************************
let f x y =
let z = ref 0 in
z := !z + x;
z := !z + y;
z (* missing "!" here? *)

let _ =
print_int (f 3 4) (* or maybe there? *)

------------------------------ old error --------------------------------
File "examples/example_missing_bang_delayed.ml", line 7, characters 12-19:
Error: This expression has type int ref

but an expression was expected of type int.
------------------------------ new error --------------------------------
File "examples/example_missing_bang_delayed.ml", line 7, characters 2-11:
Error: The function `print_int' expects one argument of type [int],

but it is given one argument of type [int ref].
You probably forgot a `!' operator somewhere.

***************************** Example 5 *********************************
let facto n = (* missing [rec] *)

if n = 0 then 1 else n * facto (n-1)
------------------------------ old error --------------------------------
File "examples/example_let_missing_rec.ml", line 2, characters 28-33:
Error: Unbound value facto
------------------------------ new error --------------------------------
File "examples/example_let_missing_rec.ml", line 2, characters 28-33:
Error: Unbound value facto.
You are probably missing the `rec' keyword on line 1.

***************************** Example 6 *********************************
let _ =

while 1 do () done
------------------------------ old error --------------------------------
File "examples/example_while_bad_condition.ml", line 3, characters 9-10:
Error: This expression has type int but an expression was expected of type

bool.
------------------------------ new error --------------------------------
File "examples/example_while_bad_condition.ml", line 3, characters 9-10:
Error: This expression is the condition of a while loop,

so it should have type [bool] but it has type [int].

***************************** Example 7 *********************************
let f x y =

if x > y then [x] (* missing "else [y]" *)
------------------------------ old error --------------------------------
File "examples/example_missing_else.ml", line 2, characters 18-20:
Error: This variant expression is expected to have type unit

The constructor :: does not belong to type unit
------------------------------ new error --------------------------------
File "examples/example_missing_else.ml", line 2, characters 17-20:
Error: This expression is the result of a conditional with no else branch,

so it should have type [unit] but it has type ['a list].

3 2014/5/19

***************************** Example 8 *********************************
let f b =

if b then 0 else 3.14 (* should have been 0. *)
------------------------------ old error --------------------------------
File "examples/example_incompatible_else.ml", line 2, characters 19-23:
Error: This expression has type float but an expression was expected of

type
int.

------------------------------ new error --------------------------------
File "examples/example_incompatible_else.ml", line 2, characters 2-23:
Error: The then-branch has type [int]

but the else-branch has type
[float].
Cannot unify type [int] with type [float].

***************************** Example 9 *********************************
let headval = function (* intended to be of type [int list -> float]

*)
| [] -> 0 (* intended [0.] instead of [0] *)
| a::_ -> float_of_int a

------------------------------ old error --------------------------------
File "examples/example_match_incompat_branches.ml", line 3, characters

13-27:
Error: This expression has type float but an expression was expected of

type
int.

------------------------------ new error --------------------------------
File "examples/example_match_incompat_branches.ml", line 3, characters

13-27:
Error: the previous branches produce values of type [int]

but this branch has type [float].

***************************** Example 10 ********************************
let rec sum = function

| [] -> 0 (* error might be 0 instead of 0. *)
| a::l -> a +. (sum l) (* or it might be +. instead of + *)

------------------------------ old error --------------------------------
File "examples/example_match_incompat_branches_2.ml", line 3, characters

18-25:
Error: This expression has type int but an expression was expected of type

float.
------------------------------ new error --------------------------------
File "examples/example_match_incompat_branches_2.ml", line 3, characters

13-25:
Error: the previous branches produce values of type [int]

but this branch has type [float].

***************************** Example 11 ********************************
let f b x =

if b
then print_int x
else print_float x

------------------------------ old error --------------------------------
File "examples/example_if_propagate.ml", line 5, characters 21-22:
Error: This expression has type int but an expression was expected of type

float.
------------------------------ new error --------------------------------
File "examples/example_if_propagate.ml", line 5, characters 9-20:
Error: The function `print_float' expects one argument of type [float],

but it is given one argument of type [int].

***************************** Example 12 ********************************
let _ =

print_float (2.0 + 3.0) (* should be [+.] instead of [+] *)
------------------------------ old error --------------------------------
File "examples/example_add_bad.ml", line 2, characters 15-18:
Error: This expression has type float but an expression was expected of

type
int.

------------------------------ new error --------------------------------
File "examples/example_add_bad.ml", line 2, characters 19-20:
Error: The function `+' expects 2 arguments of types [int] and [int],

but it is given 2 arguments of types [float] and [float].

***************************** Example 13 ********************************
let _ =

succ -1 (* missing parentheses around [-1] *)
------------------------------ old error --------------------------------
File "examples/example_f_minus_one.ml", line 2, characters 3-7:
Error: This expression has type int -> int

but an expression was expected of type int.
------------------------------ new error --------------------------------
File "examples/example_f_minus_one.ml", line 2, characters 8-9:
Error: The function `-' expects 2 arguments of types [int] and [int],

but it is given 2 arguments of types [int -> int] and [int].

***************************** Example 14 ********************************
let _ = List.fold_left (fun acc x -> acc + x) [1;2;3] 0
(* above, last two arguments of fold_left were swapped *)
------------------------------ old error --------------------------------
File "examples/example_fold_left_swap_arg.ml", line 1, characters 46-53:
Error: This expression has type 'a list

but an expression was expected of type int.
------------------------------ new error --------------------------------
File "examples/example_fold_left_swap_arg.ml", line 1, characters 8-22:
Error: The function `List.fold_left' expects 3 arguments of types

['a -> 'b -> 'a] and ['a] and ['b list],
but it is given 3 arguments of types [int -> int -> int]
and [int list] and [int].

***************************** Example 15 ********************************
let rev_filter f l =
List.fold_left (fun x acc -> if f x then x::acc else acc) [] [1; 2; 3]

(* swapped the parameters of the higher-order function *)
------------------------------ old error --------------------------------
File "examples/example_fold_left_swap_app_2.ml", line 2, characters 43-44:
Error: This expression has type 'a list

but an expression was expected of type 'a.
The type variable 'a occurs inside 'a list

------------------------------ new error --------------------------------
File "examples/example_fold_left_swap_app_2.ml", line 2, characters 2-16:
Error: The function `List.fold_left' expects 3 arguments of types

['a -> 'b -> 'a] and ['a] and ['b list],
but it is given 3 arguments of types ['c -> 'c list -> 'c list]
and ['d list] and [int list].

***************************** Example 16 ********************************
let _ = List.map (fun x -> x + 1) [2.0; 3.0]
(* should have been [+.] instead of [+], or

should have been [2;3] instead of [2.0;3.0] *)
------------------------------ old error --------------------------------
File "examples/example_map_bad.ml", line 1, characters 35-38:
Error: This expression has type float but an expression was expected of

type
int.

------------------------------ new error --------------------------------
File "examples/example_map_bad.ml", line 1, characters 8-16:
Error: The function `List.map' expects 2 arguments of types ['a -> 'b]

and ['a list], but it is given 2 arguments of types [int -> int]
and [float list].

***************************** Example 17 ********************************
let f ?(x=true) y ?z ~t u =
if x && t

then ((match z with None -> [y] | Some x -> x)) @ u
else [y]

let _ =
f ~x:false 0 ~t:false [3.0]

------------------------------ old error --------------------------------
File "examples/example_apply_labels.ml", line 6, characters 25-28:
Error: This expression has type float but an expression was expected of

type
int.

------------------------------ new error --------------------------------
File "examples/example_apply_labels.ml", line 6, characters 2-3:
Error: The function `f' expects 5 arguments of types ?x[bool option] and

['a] and ?z['a list option] and ~t[bool] and ['a list],
but it is given 4 arguments of types ~x[bool] and [int] and ~t[bool]
and [float list].

4 2014/5/19

