
Efficient Primitives for Creating and
Scheduling Parallel Computations

Umut A. Acar Arthur Charguéraud Mike Rainey
Max-Planck Institute for Software Systems
{umut,charguer,mrainey}@mpi-sws.org

Abstract
We give a brief overview of our ongoing work on developing
efficient and expressive abstractions for programming mul-
ticore machines. We propose a programming interface for
expressing a parallel computation dynamically, as a directed
acyclic graph (DAG). The DAG consists of tasks and depen-
dencies between them. Because our interface lets the DAG
take shape as the computation unfolds, the programmer can
describe a variety of computations, including those express-
ible with existing parallel-computing paradigms, such as
fork-join, spawn-sync, and parallel futures. In some parallel
applications, such as parallel, load-balancing garbage col-
lectors and graph-connectivity algorithms, performance can
be improved by reducing the cost of synchronizing paral-
lel tasks. Our interface gives the programmer a few criti-
cal building blocks to aid in reducing such synchronization
costs. In particular, through the interface, the programmer
can specify, on a per-task basis, the strategy that should be
employed for detecting when tasks become ready. We have
implemented our interface and a number of strategies in a
C++ scheduler.

1. Motivation
The fork-join and sync-spawn constructs, as well as futures,
are useful abstractions for describing parallelism. They are,
however, not always expressive enough. For example, the
depth-first traversal of a graph can, in principle, be expressed
as a fork-join program. But the resulting program will in-
cur significant loss in efficiency due to the large number of
join operations that it involves. An ideal interface for par-
allel computation would not only be expressive enough for
the programmer to describe any parallel computation, but it
would also care about efficiency.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
DAMP’12
Copyright c© 2012 ACM [to be supplied]. . . $10.00

Any parallel computation can be viewed as a directed
acyclic graph (DAG). A good interface for parallel com-
putation must enable the programmer to construct arbitrary
DAGs (at run time) by creating tasks (nodes in the DAG)
and adding dependencies between tasks (edges in the DAG).
Tracking dependencies between tasks is needed for deter-
mining when and how to execute tasks. However, this track-
ing may require significant synchronization overhead at run
time. To control this overhead, the programmer needs to be
able to select, based on the algorithm being implemented,
the most appropriate strategy for implementing the joins.

In this paper, we present an interface for expressing arbi-
trary parallel computations, where the programmer can con-
trol the strategies employed for tracking dependencies, on a
per-task basis. Our interface consists of only four functions:
one to add a node to the DAG, one to add an edge to the
DAG, one to notify the scheduler that the incoming edges of
a node have been set up, and one to transfer the continuation
of the currently-executing task to another task. When cre-
ating a node, the user specifies which in-strategy to use for
counting the number of incoming edges for this node, and
specifies which out-strategy to use for maintaining the list of
outgoing edges from this node.

Our library provides a set of commonly-used in-strategies
and out-strategies, but also accommodates user-defined
strategies that might be better-suited to particular algorithms.
The pre-defined strategies include strategies based on atomic
instructions such as fetch-and-add or compare-and-swap, as
well as strategies that rely solely on the message-passing
communication. In particular, the latter can be used to gen-
eralize our previous work on the implementation of a work
stealing scheduler that improves efficiency by minimizing
use of atomic instructions [4].

The idea of allowing parallel computations to be ex-
pressed as computation DAG’s is not new. For example,
the work-time framework [1] for understanding efficiency
of parallel programs critically takes advantage of the model.
Use of the DAG model for expressing parallel programs
is, however, less common. To the best of our knowledge,
Matsakis and Gross’s proposal is the only interface that al-
lows expressing arbitrary computation DAGs at run time [3].

type task

task* add_task(closure* c, instrategy* i,

outstrategy* o)

void add_dependency(task* t1 , task* t2)

void init_task(task* t)

outstrategy* capture_outstrategy ()

Figure 1. Functions for building the computation DAG

task* add_ready_task(closure* c, outstrategy* o)

instrategy* i = new instrategy_ready ()

task* t = add_task(c, i, o)

init_task(t)

return t

task* make_join(closure* c, instrategy* i)

outstrategy* o = capture_outstrategy ()

return add_task(c, i, o)

void fork(closure* c, task* tj)

outstrategy* o = new outstrategy_unary ()

task* t = add_ready_task(c, o)

add_dependency(t, tj)

void fork2_join(closure* c1 , closure* c2,

closure* cj , instrategy* i)

task* tj = make_join(cj, i)

fork(c1 , tj)

fork(c2 , tj)

// per -thread variable

set <task*> spawned = set_empty ()

void spawn(closure* c)

outstrategy* o = new outstrategy_unary ()

task* t = add_ready_task(c, o)

spawned.add(t)

void sync(closure c, instrategy* i)

task* t = make_join(c, i)

spawned.iter(fun ti→ add_dependency(ti ,t))

spawned = set_empty ()

init_task(t)

Figure 2. Encoding of particular parallelism constructs

That work, however, does not consider the effect of in- and
out-strategies on efficiency. Intel’s Thread Building Blocks
(TBB) [2] provides an interface for building “flow graphs”,
which are computation graphs that can accommodate fork
join and some pipelined computations. The TBB interface
allows customization of “joins”, which are analogous to our
in-strategies, but TBB provides nothing analogous to our
out-strategies. Our interface is the first to support customiz-
able in- and out- strategies. In Section 3, we describe a few
examples of where this extra flexibility is useful.

2. Interface
Figure 1 shows the interface offered to the programmer for
building DAGs. The type of a task is left abstract. Internally,
a task consists of a closure (i.e., objects with a run method),
an in-strategy and an out-strategy. The interface consists of
four functions. The first one allows adding a task (i.e., a

node) to the computation DAG. The creation of the task
is parameterized by the representation of the in- and out-
strategies, which the programmer can pick among a (user-
extensible) list of strategies. The second one allows adding
a dependency (i.e., an edge).

The third function needs to be called on the newly-created
nodes, once their incoming edges have been set up. This
function is needed for detecting tasks that have zero in-
coming edges. It is also exploited by particular in-strategies
which make the assumption that all the incoming edges
are added before the any of its dependency terminates. For
other in-strategies, it is possible to add incoming edges af-
ter the call to the initialization function. The fourth function
can be used to capture the set of outgoing edges from the
currently-executing node. Such capture is useful for dynam-
ically expanding a computation into a sub-DAG while main-
taining dependencies correctly. More precisely, the function
returns the out-strategy of the currently-executing node, and
replaces it with the empty out-strategy, i.e., the out-strategy
that corresponds to having zero outgoing edges.

Figure 2 shows the encoding of several standard paral-
lelism constructs our DAG model. The content of the fig-
ure begins with three auxiliary functions. The first function,
add ready join, creates a task with a particular in-strategy
that indicates that the task has zero incoming edges, and
it notifies the scheduler of the existence of this ready task.
Function make join helps creating a join task whose con-
tinuation is the continuation of the currently-executing task.
It takes as argument the closure that corresponds to the join
task and the in-strategy to be used for keeping track of the
number of edges incoming on this join task. The function
fork creates a new node, containing the closure passed as
first argument, and it sets the join task passed as second argu-
ment as target of the single outgoing edge of this new node.

Function fork2 join corresponds to the standard binary
fork-join construct. It creates two nodes, both of them point-
ing to a join task, whose continuation corresponds to the cur-
rent continuation. The function thus takes four arguments:
the closures associated with the two nodes, the closure asso-
ciated with the join task, and the in-strategy for the join task
(usually instrategy fetch add). An example of use of a
binary fork-join appears in Figure 3.

Fork-joins of variable arity can be constructed using the
functions make join and fork, generalizing the pattern that
appears in the definition of fork2 join. Typically, the fork
function is called from within a loop. Note that the function
check readiness needs to be called on the join task at the
end of the loop if this loop may fork zero tasks. Another way
of creating fork-joins of variable arity consists in calling the
function spawn on each task to be forked and then calling
sync in order to specify the task on which all the forked
tasks should join. These slightly more specific functions save
the programmer the burden of manipulating a task pointer.
Due to lack of space, we do not describe the encoding of

void fib(int n, int* r)

if n < 2 then *r = 1 else

int* r1 = new int*

int* r2 = new int*

fork2_join (fun () → fib(n-1, r1))

(fun () → fib(n-2, r2))

(fun () → *r = *r1 + *r2;

free r1; free r2)

Figure 3. Fibonacci, in explicit destination-passing style

class instrategy

task* t // back -pointer to the task

void init()

void delta(int d)

void msg_delta(int d)

class outstrategy

task* t // back -pointer to the task

void add(task* td)

void finished ()

void msg_add(task* td)

Figure 4. Signature for instrategies and outstrategies

futures and lazy futures, which can also be encoded in terms
of the four basic functions and with help of particular in- and
out-strategies.

We expect the programmer to use the functions from
Figure 2 whenever applicable, and to manipulate tasks and
dependencies manually only for programs where the these
functions are not expressive enough.

3. Strategies
A crucial ingredient to achieving efficient scheduling is the
ability to detect when tasks become ready. If we were in a
sequential world, it would very simple: each task would be
associated with a counter and a list of pointers. The counter
gives the number of incoming dependencies on this task, and
the list of pointers describes the list of outgoing dependen-
cies. Whenever a task terminates, the target of each of its
outgoing edges see their incoming counter decremented by
one. In a multithreaded world, however, the implementation
of counters and of set of outgoing edges is a lot more subtle.

In this section, we describe several useful in- and out-
strategies, covering both strategies using atomic operations
such as fetch-and-add, and strategies relying solely on mes-
sages for resolving data races. The code for the core of the
scheduler, which is responsible for maintaining the set of
ready tasks and for executing these ready tasks one by one,
appears in Figure 5. The code covers the implementation of
the four functions from our interface, plus the main loop that
controls the execution of each thread. This code helps un-
derstanding how the scheduler interacts with the in- and the
out-strategies, which will be explained later on.

The high-level presentation of Figure 5 is as follows.
When a task is created, it is added to the set of ready tasks.
When a dependency is created between a task A and a task
B, the A’s out-strategy and B’s in-strategy are notified. When

type task = { closure* c, instrategy* i,

outstrategy* o }

set <task*> ready_tasks // per -thread

task* my_current_task // per -thread

task* add_task(closure* c, instrategy* i,

outstrategy* o)

task* t = new task(c, i, o)

i.t = t; o.t = t; return t

void add_dependency(task* t1 , task* t2)

t1.o.add(t2)

t2.i.delta (+1)

void init_task(task* t)

t.i.init()

outstrategy* capture_outstrategy ()

outstrategy* o = my_current_task.o

my_current_task.o = new outstrategy_void ()

return o

void main() // per -thread

while true do

while ready_tasks.is_empty () do

communicate_with_other_threads ()

task* t = ready_tasks.pop()

my_current_task = t

t.c.run()

t.o.finished ()

Figure 5. Implementation of the interface in a scheduler

void schedule(task* t)

ready_tasks.add(t)

void decr_dependencies(task* t)

t.i.delta (-1)

type message =

| MSG_DELTA_IN(instrategy* i, int d)

| MSG_ADD_OUT(outstrategy* o, task* td)

void handle_message(message m)

match m with

| MSG_DELTA_IN(i,d) → i.msg_delta(d)

| MSG_ADD_OUT(o,td) → o.msg_add(td)

void send(int id_thread , message m);

Figure 6. Helper functions for implementing strategies

a task A completes its execution, the out-strategy of a task
is responsible for notifying the in-strategy of each task that
depends on task A.

The scheduler also provides several functions, shown in
Figure 6, that are used to implement in- and out-strategies. A
call to schedule(t) indicates the to scheduler that the task
t has just become ready. A call to decr dependencies(t)

can be made by an out-strategy to notify the in-strategy of
the task t that one dependency has just become satisfied.
Moreover, for the implementation of message-based strate-
gies, we assume that each thread is polling for messages on
a regular basis and invoking the function handle message

class outstrategy_void extends outstrategy

void finished () { free this }

void add(task* td) { assert false }

void msg_add(task* td) { assert false }

class outstrategy_unary extends outstrategy

task* tone = NULL

void add (task* td) { tone = td }

void finished () {

decr_dependencies(tone); free this }

void msg_add(task* td) { assert false }

class outstrategy_message extends outstrategy

int master = my_id

list <task*> ts = nil

void add(task* td) {

if my_id == master

then master_add(td)

else send(master , MSG_ADD_OUT(this , td)) }

void msg_add(task* td) { master_add(td) }

void master_add(task* td) { ts.cons(td) }

void finished () {

ts.iter(decr_dependencies); free this }

Figure 7. Implementation of particular outstrategies

on each received message. A function send is provided by
the scheduler for sending messages.

The signature for out-strategies appears in Figure 4. The
function add(td) is used to add a task td to the set of depen-
dencies. The function finished is invoked by the scheduler
on completion of the task, indicating the out-strategy that it
should notify all the dependencies. The function msg add is
used by message-passing implementations. Figure 7 shows
the implementation of three out-strategies: one for the case
where there is no outgoing edges, one for the case where
there is exactly one outgoing edge, one that handles the gen-
eral case using messages. By lack of space, we do not show
the strategy based on concurrent lists or per-thread lists, nor
the strategies specialized for futures and lazy futures.

The signature for in-strategies appears in Figure 4. The
function init is called when the user calls init task.
The function delta can be used to update the number of
incoming dependencies. The function msg delta is used
by message-passing implementations. Figure 8 starts with
a template class for in-strategies. The template class, called
instrategy def assumes the existence of a function called
check, which tests whether there is no remaining dependen-
cies. It offers an auxiliary function start for scheduling the
task and deleting the current in-strategy.

The rest of Figure 8 contains three particular in-strategies:
one specialized for tasks that are always ready, one that han-
dles the general case using fetch-and-add atomic operations,
and one called the optimistic in-strategy. The latter strategy,
introduced in our earlier work [4], relies on a combination of
non-atomic decrement operations and messages to avoid ex-
pensive fetch-and-add operations while still being able to re-
cover from the (rare) case where a race occurs. Note that the
optimistic strategy assumes that no incoming edge is added

class instrategy_def extends instrategy

void check()

void init() { check () }

void start() { schedule(t); free this }

void msg_delta(int d) { assert false }

class instrategy_ready extends instrategy_def

void check() { start() }

void delta(int d) { assert false }

class instrategy_fetch_add extends instrategy_def

int counter = 0

void check() {

if counter == 0 then schedule(t) }

void delta(int d) {

int old_counter = fetch_add(counter , d)

if old_counter == 1 then schedule(t) }

class instrategy_optimistic extends instrategy_def

int master = my_id

int mcounter = 0

int scounter = 0

void init() { scounter = mcounter; check() }

void check() { if (mcounter == 0) then start () }

void delta(int d) {

if (d > 0)

assert (my_id == master)

mcounter += d

else

if (my_id == master)

mcounter += d

scounter += d

check()

else

if (scounter + d == 0)

scounter = -1

schedule(t)

else

scounter += d;

send(master , MSG_DELTA_IN(this , d)) }

void msg_delta(int d) {

mcounter += d

if (mcounter == 0)

if (scounter != -1)

schedule(t)

free this }

Figure 8. Strategies for detecting readiness of tasks

after the dependencies start executing. Due to lack of space,
we do not show the strategy based solely on messages, nor
the strategy that uses one counter per thread and assigns one
thread the responsibility to check whether the sum of all the
counters reaches zero. Such a distributed in-strategy is use-
ful in particular for detecting termination of graph traversal.

[1] Richard P. Brent. The parallel evaluation of general arithmetic
expressions. J. ACM, 21(2):201–206, 1974.

[2] Intel. Intel threading building blocks. 2011.

[3] Nicholas Matsakis and Thomas Gross. Programming with
intervals. In LCPC, volume 5898 of LNCS, pages 203–217.
2010.

[4] Mike Rainey Umut A. Acar, Arthur Charguéraud. Efficient
synchronization-free work stealing. Draft., August 2011.

