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Abstract
A classic problem in parallel computing is determining
whether to execute a task in parallel or sequentially. If small
tasks are executed in parallel, the task-creation overheads
can be overwhelming. If large tasks are executed sequen-
tially, processors may spin idle. This granularity problem,
however well known, is not well understood: broadly appli-
cable solutions remain elusive.

We propose techniques for controlling granularity in im-
plicitly parallel programming languages. Using a cost se-
mantics for a general-purpose language in the style of the
lambda calculus with support for parallelism, we show that
task-creation overheads can indeed slow down parallel ex-
ecution by a multiplicative factor. We then propose oracle
scheduling, a technique for reducing these overheads, which
bases granularity decisions on estimates of task-execution
times. We prove that, for a class of computations, oracle
scheduling can reduce task creation overheads to a small
fraction of the work without adversely affecting available
parallelism, thereby leading to efficient parallel executions.

We realize oracle scheduling in practice by a combination
of static and dynamic techniques. We require the program-
mer to provide the asymptotic complexity of every func-
tion and use run-time profiling to determine the implicit,
architecture-specific constant factors. In our experiments,
we were able to reduce overheads of parallelism down to
between 3 and 13 percent, while achieving 6- to 10-fold
speedups.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming

General Terms Algorithms, Experimentation, Languages
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1. Introduction
Explicit parallel programming provides full control over
parallel resources by offering primitives for creating and
managing parallel tasks, which are small, independent threads
of control. As a result, the programmer can, at least in princi-
ple, write efficient parallel programs by performing a careful
cost-benefit analysis to determine which tasks should be ex-
ecuted in parallel and under what conditions. This approach,
however, often requires reasoning about low-level execu-
tion details, such as data races or concurrent effects, which
is known to be notoriously hard; it can also result in code
that performs well in a particular hardware setting but not in
others.

The complexities of parallel programming with explicit
languages have motivated interest in implicitly parallel lan-
guages, such as Cilk [12], Manticore [16, 17], Multilisp [22],
and NESL [8]. These languages enable the programmer
to express opportunities for parallelism via language con-
structs, e.g., parallel sequences, parallel arrays, and paral-
lel tuples. This implicit approach enables a declarative pro-
gramming style by delegating the task of utilizing the par-
allelism exposed by the program to the compiler and the
run-time system. As an implicit parallel program executes,
it exposes opportunities for parallelism (as indicated by the
parallel constructs) and the language run-time system creates
parallel tasks as needed. To execute parallel tasks efficiently,
implicit programming languages use a scheduler to load bal-
ance, i.e., distribute parallel tasks among processors. Various
scheduling techniques and practical schedulers have been
developed, including work-stealing schedulers [1, 3, 11] and
depth-first-search schedulers [7].

Experience with implicitly parallel programs shows that
one of the most important decisions that any implicit parallel
language must make is determining whether or not to exploit
an opportunity for parallelism by creating a parallel task.
Put another way, the question is to determine which tasks to
execute in parallel and which tasks to execute sequentially.
This problem, often referred to as the granularity problem, is
important because creating a parallel task requires additional
overhead. If the task granularity is not handled effectively,



task-creation overheads can easily obliterate the benefit of
parallelism.

Many parallel programs are characterized by parallel
slackness [41], a property which indicates that the program
exposes many more opportunities for parallelism than the
number of available processors. In such programs, effec-
tive granularity control is crucial because the program typi-
cally creates many small tasks, thereby ensuring significant
scheduling overhead.

No known broadly applicable solution to the granular-
ity problem exists. Theoretical analyses often ignore task-
creation overheads, yielding no significant clues about how
these overheads may affect efficiency. Practical implemen-
tations often focus on reducing task-creation overheads in-
stead of attempting to control granularity. As a result, practi-
tioners often deal with this issue by trying to estimate the
right granularity of work that would be sufficiently large
to execute in parallel. Since the running time of a task de-
pends on the hardware, such manual control of granularity
is difficult and bound to yield suboptimal results and/or non-
portable code [40].

In this paper, we propose theoretical and practical tech-
niques for the granularity problem in implicit parallel-
programming languages. Our results include theorems that
characterize how parallel run time is affected by task-
creation overheads, which we show to be significant (Sec-
tion 3). To reduce these overheads, we consider a granularity
control technique that relies on an oracle for determining the
run-time of parallel tasks (Section 2). We show that if the
oracle can be implemented efficiently and accurately, it can
be used to improve efficiency for a relatively large class of
computations (Section 3). Based on this result, we describe
how oracles can be realized in practice; we call this tech-
nique oracle scheduling because it relies on an oracle to
estimate task sizes and because it can be used in conjunction
with practically any other scheduler (Section 4). Finally, we
propose an implementation of oracle scheduling that uses
complexity functions defined by the user to approximate ac-
curately run-time of parallel tasks (Section 4). We present an
implementation and evaluation of the proposed approach by
extending a subset of the Caml language (Sections 5 and 6).

Brent’s theorem [13], commonly called the work-time
principle, characterizes what is arguably the most important
benefit of parallel programs, which is that a parallel program
can be executed on a multiprocessor to obtain near linear
speedups. For a computation, let raw work, written w, re-
fer to the total number of executed instructions, and let raw
depth, written d, refer to the length longest dependent chain
of executed instructions. Brent’s theorem shows that we can
execute a computation with w raw work and d raw depth
in no more than w/P + d steps on P processors using any
greedy scheduler. 1 A greedy scheduler is a scheduler that
can find available work immediately. This assumption is rea-

1 Note that the bound is tight within a factor of two.

sonably realistic, as practical multiprocessor scheduling al-
gorithms, such as work-stealing, can match Brent’s bound
asymptotically for certain relatively large classes of compu-
tations, e.g., fork-join and nested data-parallel computations.

In the execution model with raw work and raw depth,
each instruction implicitly is assigned unit cost. Unfortu-
nately, this model does not direcly account for task-creation
overheads. To assess the significance of these overheads in
implicitly parallel programs, we consider a lambda calculus
with parallel tuples and present a cost-semantics for evalu-
ating expression of this language (Section 2). The cost se-
mantics accounts for task-creation overheads by assigning
non-unit costs to the operations generating such overheads.
In addition to raw work and raw depth, the cost seman-
tics yield total work, total depth of each evaluated expres-
sion. We define total work, written W , as the total cost of
the evaluated instructions, and total depth, written D, as the
total cost of the most expensive dependent chain of evalu-
ated instructions—total work and total depth include task-
creation overheads.

Using this cost semantics, we show that task creation
overheads can be a significant multiplicative factor of the
raw work. To understand the understand the impact of the
overheads, we adapt Brent’s theorem to take them into ac-
count (Section 2). Specifically, we show that parallel com-
putations with total work W and total depth D can be exe-
cuted in no more thanW/P+D steps. Intuitively, this bound
shows that task-creation overheads contribute directly to the
parallel run time just like any other work. Combined with the
result that task-creation overheads can increase total work by
a multiplicative factor, the generalized Brent’s theorem im-
plies that the overheads slow down parallel run time by a
multiplicative factor.

To reduce task-creation overheads, we propose an alterna-
tive oracle semantics that capture a well-known principle for
avoiding the task-creation overheads. We evaluate a task in
parallel only if its is sufficiently large, i.e., greater than some
cutoff constant κ. We show that the oracle semantics can de-
crease the overheads of task-creation by any desired constant
factor κ, but only at the cost of increasing the total depth
(Sections 2 and 3). These bounds suggest that we can reduce
the task-creation overheads significantly, if we can realize
the semantics in practice. This unfortunately is impossible
because it requires determining a priori task-creation over-
heads. We show, however, that a realistic oracle that can give
constant-factor approximations to the task run times can still
result in similar reductions in the overheads. We show that if
we have prior knowledge of the raw work and the raw depth
of a computation, then we can pick the optimal cutoff con-
stant κ that yields the fastest parallel run time for a class
of computations. We also show that, under some assump-
tions, there exists a constant κ that reduces the task creation
overheads to a small constant ratio of the raw work, without



increasing the depth of the computation in a way that would
significantly affect the run time.

To realize the oracle semantics in practice, we describe
a scheduling technique that we call oracle scheduling (Sec-
tion 4). Oracle scheduling relies on a task-size estimator that
can estimate the actual run time of parallel tasks in constant-
time within a constant factor of accuracy, and a conventional
greedy scheduling algorithm, e.g., work-stealing, or a par-
allel depth-first scheduler. Oracle schedulers perform effi-
cient parallel task creation by selectively executing in paral-
lel only those tasks that have a large parallel run-time. We
describe an instance of the oracle scheduler that relies on
an estimator that uses asymptotic cost functions (asymptotic
complexity bounds) and judicious use of run-time profiling
techniques to estimate actual run-times accurately and effi-
ciently. This approach combines an interesting property of
asymptotic complexity bounds, which are expressed with-
out hardware-dependent constants, and profiling techniques,
which can be used to determine these constants precisely.

We present a prototype implementation of the proposed
approach (Section 5) by extending the OCAML language to
support parallel tuples and complexity functions. The imple-
mentation translates programs written in this extended lan-
guage to the PML (Parallel ML) language [17]. Although our
implementation requires the programmer to enter the com-
plexity information, this information could also be inferred
in some cases via static analysis (e.g., [25] and references
therein). In our implementation, for simplicity we only con-
sider programs for which the execution time is (with high
probability) proportional to the value obtained by evaluat-
ing the asymptotic complexity expression. We extend the
Manticore compiler for PML to support oracle scheduling
and use it to compile generated PML programs. Our exper-
iments (Section 6) show that oracle implementation can re-
duce the overheads of a single processor parallel execution
to between 3 and 13 percent of the sequential time. When
using 16 processors, we achieve 7- to 15-fold speedups on
an AMD machine and 6- to 10-fold speedups on an Intel
machine.

2. Source Language
To give an accurate account of the cost of task creation,
and to specify precisely our compilation strategy, we con-
sider a source language in the style of the λ-calculus and
present a dynamic cost semantics for it. The semantics and
the costs are parameterized by τ and φ, which represent the
cost of creating a parallel task and the cost of consulting an
external oracle for predicting the sizes of its two branches
respectively. By using a known proof technique, we gener-
alize Brent’s theorem to take task-creation overheads into
account.

v ::= x | n | (v, v) | inl v | inr v | fun f.x.e

e ::= v | let x = e1 in e2 | (v v) | fst v | snd v |
case v of {inl x.e, inr x.e} | (e, e) | (|e, e|)

Figure 1. Abstract syntax of the source language

2.1 Cost semantics
The source language includes recursive functions, pairs, sum
types, and parallel tuples. Parallel tuples enable expressing
computations that can be performed in parallel, similar to the
fork-join or nested data parallel computations. For simplicity
of exposition, we consider parallel tuples of arity two only.
Parallel tuples of higher arity can be easily represented with
those of arity two.

To streamline the presentation, we assume programs to
be in A-normal form, with the exception of pairs and paral-
lel pairs, which we treat symmetrically because our compila-
tion strategy involves translating parallel pairs to sequential
pairs. Figure 1 illustrates the abstract syntax of the source
language. We note that, even though the presentation is only
concerned with a purely-functional language, it is easy to
include references; for the purposes of this paper, however,
they add no additional insight and thus are omitted for clar-
ity.

We define a dynamic semantics where parallel tuples are
evaluated selectively either in parallel or sequentially, as de-
termined by their relative size compared with some constant
κ, called the cutoff value and such that κ ≥ 1. To model this
behavior, we present an evaluation semantics that is param-
eterized by an identifier that determines the mode of execu-
tion, i.e., sequential or not. For the purpose of comparison,
we also define a (fully) parallel semantics where parallel tu-
ples are always evaluated in parallel regardless of their size.
The mode of an evaluation is sequential (written seq), paral-
lel (written par), or oracle (written orc). We let α range over
modes:

α ::= seq | par | orc.

In addition to an evaluating expression, the dynamic se-
mantics also returns cost measures including raw work and
raw depth denoted by w and d (and variants), and total work
and total depth, denoted by W and D (and variants). Dy-
namic semantics is presented in the style of a natural (big-
step) semantics and consists of evaluation judgments of the
form

e ⇓α v, (w, d), (W,D).

This judgment states that evaluating expression e in mode α
yields value v resulting in raw work of w and raw depth of d
and total work ofW and total depth of D.

Figure 2 shows the complete inductive definition of the
dynamic cost semantics judgment e ⇓α v, (w, d), (W,D).
When evaluating any expression that is not a parallel tuple,



(value)

v ⇓α v, (1, 1), (1, 1)

(let)
e1 ⇓α v1, (w1, d1), (W1,D1) e2[v1/x] ⇓α v, (w2, d2), (W2,D2)

(let x = e1 in e2) ⇓α v, (w1 + w2 + 1, d1 + d2 + 1), (W1 +W2 + 1,D1 +D2 + 1)

(app)
(v1 = fun f.x.e) e[v2/x, v1/f ] ⇓α v, (w, d), (W,D)

(v1 v2) ⇓α v, (w + 1, d+ 1), (W + 1,D + 1)

(first)

(fst (v1, v2)) ⇓α v1, (1, 1), (1, 1)

(second)

(snd (v1, v2)) ⇓α v2, (1, 1), (1, 1)

(case-left)
e1[v1/x1] ⇓α v, (w, d), (W,D)

case (inl v1) of {inl x1.e1, inr x2.e2} ⇓α v, (w + 1, d+ 1), (W + 1,D + 1)

(case-right)
e2[v2/x2] ⇓α v, (w, d), (W,D)

case (inr v2) of {inl x1.e1, inr x2.e2} ⇓α v, (w + 1, d+ 1), (W + 1,D + 1)

(tuple)
e1 ⇓α v1, (w1, d1), (W1,D1) e2 ⇓α v2, (w2, d2), (W2,D2)

(e1, e2) ⇓α (v1, v2) , (w1 + w2 + 1, d1 + d2 + 1), (W1 +W2 + 1,D1 +D2 + 1)

(ptuple-seq)
e1 ⇓seq v1, (w1, d1), (W1,D1) e2 ⇓seq v2, (w2, d2), (W2,D2)

(|e1, e2|) ⇓seq (v1, v2) , (w1 + w2 + 1, d1 + d2 + 1), (W1 +W2 + 1,D1 +D2 + 1)

(ptuple-par)
e1 ⇓par v1, (w1, d1), (W1,D1) e2 ⇓par v2, (w2, d2), (W2,D2)

(|e1, e2|) ⇓par (v1, v2) , (w1 + w2 + 1, max (d1, d2) + 1), (W1 +W2 + 1 + τ, max (D1,D2) + 1 + τ)

(ptuple-orc-parallelize)
w1 ≥ κ ∧ w2 ≥ κ e1 ⇓orc v1, (w1, d1), (W1,D1) e2 ⇓orc v2, (w2, d2), (W2,D2)

(|e1, e2|) ⇓orc (v1, v2) , (w1 + w2 + 1, max (d1, d2) + 1), (W1 +W2 + 1 + τ + φ, max (D1,D2) + 1 + τ + φ)

(ptuple-orc-sequentialize)
w1 < κ ∨ w2 < κ

e1 ⇓(ifw1<κ then seq else orc) v1, (w1, d1), (W1,D1) e2 ⇓(ifw2<κ then seq else orc) v2, (w2, d2), (W2,D2)

(|e1, e2|) ⇓orc (v1, v2) , (w1 + w2 + 1, d1 + d2 + 1), (W1 +W2 + 1 + φ,D1 +D2 + 1 + φ)

Figure 2. Dynamic cost semantics

we calculate the (raw or total) work and the (raw or total)
depth by summing up those of the premises (subexpressions)
and adding one unit to include the cost of the judgment.
For all expressions, including parallel tuples, each evaluation
step contributes 1 to the raw work or raw depth. When
calculating total work and total depth, we take into account
the cost of creating a parallel task τ and the cost of making
an oracle decision φ.

Evaluation of parallel tuples vary depending on the mode.

• Sequential mode. Parallel tuples are treated exactly like
sequential tuples: evaluating a parallel tuple simply con-
tributes 1 to the raw and the total work (depth), which
are computed as the sum of the work (depth) of the two
branches plus 1. In the sequential mode, raw and total
work (depth) are the same.
• Parallel mode. The evaluation of parallel tuples induces

an additional constant cost τ . The depth is computed as



the maximum of the depths of the two branches of the
parallel tuple plus 1, and work is computed as the sum of
the work of the two branches plus τ . In the oracle mode,
there are two cases. If the parallel tuple is scheduled
sequentially, then its costs 1 unit. Raw/total work and
depth are both calculated as the sum of the depth of the
branches plus one. If the parallel tuple is evaluated in
parallel, then an extra cost τ is included in the total work
and depth and the depth is computed as the maximum of
the depth of the two branches.
• Oracle mode. The scheduling of a parallel tuple depends

on the amount of raw work involved in the two branches.
If the raw work of each branch is more than κ, then the tu-
ple is evaluated in parallel in the oracle mode. Otherwise,
the raw work of at least one branch is less than κ, and the
tuple is executed sequentially. When evaluating a paral-
lel tuple sequentially, the mode in which each branch is
evaluated depends on the work involved in the branch. If
a branch contains more than κ units of raw work, then it
is evaluated in oracle mode, otherwise it is evaluated in
sequential mode. This switching to sequential mode on
small tasks is needed for ensuring that the oracle is not
called too often during the evaluation of a program.

2.2 Generalized Brent’s theorem
In order to relate the total work and total depth of a pro-
gram with its execution time, we rely on Brent’s theorem.
This theorem is usually formulated in terms of computation
DAGs. A computation DAG is a directed acyclic graph that
represents a parallel computation. Nodes in the graph rep-
resent atomic computations. Edges between nodes represent
precedence relations, in the sense that an edge from a to b in-
dicates that the execution of a must be completed before the
execution of b can start. Every computation DAG includes
a source node and a sink node, representing the starting and
the end points of the computation, respectively. Those nodes
are such that all nodes of a computation DAG are reachable
from the source node, and the sink node is reachable from all
nodes. An example computation DAG appears in Figure 3.
A node is said to be ready if all the nodes that points to it
have already been executed.

Brent’s theorem gives a bound on the time required for
executing all the tasks in a computation DAG with a greedy
scheduler, assuming that each node takes a unit of time to
execute. A scheduler is said to be greedy if it never stays
idle unnecessarily, i.e., when there exists a ready node the
scheduler finds it at no cost and executes it. Typical proofs
of Brent’s theorem assume a unit cost model where each
instruction costs a unit cost to execute and construct a “level-
by-level” execution schedule.

One way to extend the Brent’s theorem to include task-
creation overheads is to assign a weight to each node. Prov-
ing such a generalization directly, however, turns out to be
highly nontrivial and in our attempts resulted in relatively

Figure 3. An example computation DAG.

complex proofs. Another approach is to represent non-unit
cost tasks with a sequence of unit tasks, e.g., we can replace
a task with weight three with a sequence of three unit-cost
tasks. Since overheads are non-divisible work, we would re-
quire that such tasks execute on the same processors back
to back without interleaving with other tasks. With this ap-
proach, typical proofs of Brent’s theorem, which assume a
“level-by-level” execution schedule, do not work because
they break up sequences. Fortunately, we have found that
Arora et al’s proof [3] can be adapted easily for this purpose,
because it makes no assumption about ordering of ready
nodes, directly allowing us to generalize Brent’s theorem to
include task-creation overheads.

Theorem 2.1 (Brent’s theorem for computation DAGs)
Let G be a computation DAG made of W nodes and whose
longest path has length D. Any greedy scheduler can exe-
cute this computation DAG in no more than W

P +D steps on
P processors.

Proof At each execution step, each processor places a token
in the work bucket if it is busy at this step, otherwise it places
a token in the idle bucket. The work bucket contains exactly
W tokens at the end of the execution. Let I be the number
of tokens contained in the idle bucket at the end of the
execution, and let T denote the total number of steps in the
execution. Because a total TP tokens are created, we have
TP = W + I . In order to establish the result T ≤ W

P +D,
it thus suffices to establish the inequality I ≤ PD.

Consider a given time step. If all processors are execut-
ing then the idle bucket receives zero tokens. Otherwise, a
number of processors are idle. In this case, the idle bucket
receives between one and P − 1 tokens. We can bound the
number of time steps at which this situation happens, as fol-
lows. If one or more processors are idle, it means that those
processors cannot find a ready task to execute. Because the
scheduler is assumed to be greedy, it must be the case that all
the ready tasks are currently executing. Therefore, at such a
time step, the maximal length of a path in the computation
DAG starting from a ready node decreases by one unit. Be-
cause the maximal length of a path in the computation DAG
is initially D, there can be at most D time steps at which not



all processors are executing. It follows that the final number
of tokens in the idle bucket does not exceeed (P −1)D. This
result entails the inequality I ≤ PD. �

Observe that the proof does not impose any constraint on
the order in which the ready tasks should be executed by the
processors. So, if one processor starts working on a sequence
of several nodes, then it can execute all the nodes in the
sequence before looking for other ready tasks. Therefore,
the proof accepts computation DAGs that encode non-unit
tasks as sequences of unit tasks. We will make use of such
an encoding in the proof of our next theorem, which relates
our cost semantics to the computation DAG model.

Theorem 2.2 (Brent’s theorem for the cost semantics)
Assume e ⇓orc v, (w, d), (W,D) to hold for some v, w and
d. Any greedy scheduler can execute the expression e in no
more than WP +D computations steps on P processors.

Proof In order to invoke the version of Brent’s theorem
that applies to computation DAGs, we build the computa-
tion DAG associated with the execution of the expression
e, including nodes that represent the cost of scheduling. To
that end, we describe a recursive algorithm for turning an
expression e with total work W and total depth D into a
corresponding computation DAG containing W nodes and
whose longest path has length D. The algorithm follows the
structure of the derivation that e has total workW and total
depth D.

• If the last rule has zero premises, then e is an atomic
expression andW = D = 1. We build the corresponding
DAG as a single node.
• If the last rule has one premise, then W takes the form
W1 + 1 and D takes the form D1 + 1. Let G1 be the
DAG corresponding to the sub-expression described in
the premise. We build G by extending G1 with one node
at the bottom, that is, by sequentially composingG1 with
a DAG made of a single node.
• Otherwise the last rule has two premises. First, consider

the case where e is a let-expression. W takes the form
W1 +W2 + 1 and D takes the form D1 + D2 + 1. Let
G1 and G2 be the DAGs corresponding to the two sub-
expressions. We build G by sequentially composing G1

with a single node and then with G2.
• Consider now the case of a parallel tuple that is sequen-

tialized. W takes the form W1 + W2 + 1 + φ and D
takes the form D1 + D2 + 1 + φ. Let G1 and G2 be the
DAGs corresponding to the two branches. We build G by
sequentially composing 1 + φ unit-cost nodes with the
sequential composition of G1 and G2.
• Finally, consider the case of a parallel tuple that is par-

allelized.W takes the formW1 +W2 + 1 + τ + φ and
D takes the form max (D1,D2) + 1 + τ + φ. Let G1 and
G2 be the DAGs corresponding to the two branches. We

build G by sequentially composing 1 + τ + φ unit-cost
nodes with the parallel composition of G1 and G2.

It is straightforward to check that, in each case, W and D
match the number of nodes and the total depth of the DAG
being produced. �

3. Analysis
We analyze the impact of task creation overheads on paral-
lel execution time and show how these costs can be reduced
dramatically by using our oracle semantics. For our analy-
sis, we first consider an ideal oracle that always makes per-
fectly accurate predictions (about the raw work of expres-
sions) without any overhead (i.e., φ = 0). Such an ideal or-
acle is unrealistic, because it is practically impossible to de-
termine perfectly accurately the raw work of computations.
We therefore consider a realistic oracle that approximates
the raw work of computations by performing constant work.
Our main result is a theorem that shows that the ideal oracle
can reduce the task-creation overheads to any desired con-
stant fraction of the raw work with some increase in depth,
which we show to be small for a reasonably broad class of
computations.

3.1 Ideal oracle
We quantify the relationships between raw work, raw depth
and total work, total depth for each mode.

Theorem 3.1 (Work and depth) Consider an expression e
such that e ⇓α v, (w, d), (W,D). Assume φ = 0. The
following tight bounds can be obtained for total work and
total depth, on a machine with P processors where the cost
of creating parallel tasks is τ .

α Bound on total work Bound on total depth
seq W = w D = d = w
par W ≤ (1 + τ

2 )w D ≤ (1 + τ) d
orc W ≤ (1 + τ

κ+1 )w D ≤ (1 + max (τ, κ)) d

Proof The equations concerning the sequential semantics
follow by inspection of the semantics of the source language
(Figure 2). The inequalities for the parallel and the oracle
modes follow directly by our more general bounds presented
later (Theorems 3.2 and 3.3). To prove that the inequalities
for the parallel and the oracles modes are tight, we give
example computation that achieve the bounds.

• Parallel mode. Consider an expression consisting only
of parallel tuples with n leaves, and thus n − 1 “internal
nodes”. The raw work w is equal to n+(n−1) while the
total workW is equal to n+(n−1)(1+τ). We therefore
have W = (1 + nτ

2n+1 )w ≤
(
1 + τ

2

)
w. As n increases,

the bound approaches
(
1 + τ

2

)
w and thus the bound on

the total work is tight. To see that the depth bound is also
tight, note that each parallel tuple adds 1 to the raw depth
and 1 + τ to the total depth. The total depth therefore can
be as much as 1 + τ times greater than the raw depth.



• Oracle mode. Consider an expression with n nested par-
allel tuples, where tuples are always nested in the right
branch of their parent tuple. The tuples are built on top
of expressions that involve κ units of work. In the oracle
semantics, all the tuples are executed in parallel. Thus the
raw workw is n+(n+1)κ, the total workW is n(1+τ)+

(n+1)κ, andW = w
(

1 + nτ
n(κ+1)+κ

)
≤ w

(
1 + τ

κ+1

)
.

As n increases, the bound approaches
(

1 + τ
κ+1

)
w and

thus the bound on the total work is tight.
For the depth bound, we consider two cases. In the first
case, we have τ ≥ κ. Using the same example, the raw
depth is d = n+1, the total depth isD = n(1+τ)+κ, and
D =

(
1 + nτ+κ−1

n+1

)
d ≤ (1 + τ) d. As n increases, D

approaches (1 + τ) d and thus the bound is tight.
For the second case when κ ≥ τ , we change the example
slightly by reducing the amount of raw work in each leaf
to just under κ. This will cause all the parallel tuples to
be evaluated sequentially; the raw depth is d = n+κ and
the total depth is equal to the total work, i.e., D = n +

(n+ 1)κ ≤
(

1 + nκ
n+κ

)
d. As n increases, D approaches

(1 + κ) d and thus the bound is tight. �

This theorem leads to some important conclusions. First,
the theorem shows that task creation (scheduling) costs mat-
ter a great deal. In a parallel evaluation, the total work and
total depth can be as much as τ times larger than the raw
depth and raw work. This essentially implies that a paral-
lel program can be significantly slower than its sequential
counterpart. If τ is large compared to the number of pro-
cessors, then even in the ideal setting, where the number of
parallel processors is small relative to τ , we may observe
no speedups. In fact, it is not uncommon to hear anecdotal
evidence of this kind of slowdown in modern computer sys-
tems.

Second, the theorem shows that evaluation of a program
with an ideal oracle can require as much as κ

2 less work than
in the parallel mode. This comes at a cost of increasing the
depth by a factor of κ

τ . Increasing the depth of a computa-
tion can hurt parallel execution times because many parallel
schedulers rely on the availability of large degree of paral-
lelism to achieve optimal speedups. Unless done carefully,
increasing the depth can dramatically reduce parallel slack-
ness. In the common case, however, where there is plenty of
parallelism, i.e., when w

P is far greater than d, we can safely
increase depth by a factor of κ

τ to reduce the task-creation
overheads. Concretely, if parallel slackness is high and κ is
not too large, then κd remains small compared to w

P , and
τ
κ
w
P becomes much smaller than τ

2
w
P , dramatically reducing

task-creation overheads without harming parallel speedups.

3.2 Realistic oracles
The analysis that we present above makes two unrealistic
assumptions about oracles: 1) that they can accurately pre-

dict the raw work for a task, and 2) that the oracle can make
predictions in zero time. Realizing a very accurate oracle in
practice is difficult, because it requires determining a pri-
ori the execution time of a task. We therefore generalize the
analysis by considering an approximate or realistic oracle
that can make errors up to a multiplicative factor µ when es-
timating raw work. For example, an oracle can approximate
raw work up to a constant factor of µ = 3, i.e., a task with
raw work w would be estimated to perform raw work be-
tween w

3 and 3w. Additionally, we allow the oracle to take
some (fixed) constant time, written φ, to provide its answer.

We show that even with a realistic oracle, we can reduce
task creation overheads. We start with bounding the depth;
the result implies that the total depth is no larger than µκ
times the raw depth when κ is large compared to τ and
φ. Since with the ideal oracle this factor was κ, the bound
implies that the imprecision of the oracle can be influenced
by changing the constant multiplicative factor.

Theorem 3.2 (Depth with a realistic oracle)

e ⇓orc v, (w, d), (W,D) ⇒ D ≤ (1+max (τ, µκ)+φ) d

Proof Let ρ denote 1 + max (τ, µκ) + φ; we want to prove
that D ≤ ρd. The proof is by induction on the derivation
e ⇓orc v, (w, d), (W,D).
• For a rule with zero premises, we have D = d = 1.

Because ρ ≥ 1, it follows that D ≤ ρd.
• For a rule with one premise, we know by induction

hypothesis that D ≤ ρd. Using again the fact that ρ ≥ 1,
we can deduce the inequality D + 1 ≤ ρ(d+ 1).
• For a rule with two premises, we can similarly establish

the conclusion D1 + D2 + 1 ≤ ρ(d1 + d2 + 1) using the
induction hypotheses D1 ≤ ρd1 and D2 ≤ ρd2.
• Now, consider the case of a parallel tuple. First, assume

that the two branches of this tuple are predicted to be large.
In this case, the tuple is executed in parallel and the branches
are executed in oracle mode. We exploit the induction hy-
potheses D1 ≤ ρd1 and D2 ≤ ρd2 to conclude as follows:

D= max (D1,D2) + 1 + τ + φ
≤ max (ρd1, ρd2) + 1 + max (τ, µκ) + φ
≤ max (ρd1, ρd2) + ρ
≤ ρ (max (d1, d2) + 1)
≤ ρd

• Consider now the case where both branches are pre-
dicted to be small. In this case, the tuple is executed sequen-
tially. Because the oracle predicts the branches to be smaller
than κ, they must be actually smaller than µκ. So, we have
w1 ≤ µκ and w2 ≤ µκ. Moreover, both branches are exe-
cuted according to the sequential mode, so we haveD1 = w1

and D2 = w2. It follows that D1 ≤ µκ and D2 < µκ. Be-
low, we also exploit the fact that max (d1, d2) ≥ 1, which
comes from the fact that raw depth is at least one unit. We



conclude as follows:

D= D1 +D2 + 1 + φ
≤ µκ+ µκ+ 1 + φ
≤ (1 + µκ+ φ) ∗ 2
≤ (1 + max (τ, µκ) + φ) · (max (d1, d2) + 1)
≤ ρd

• It remains to consider the case where one branch is
predicted to be smaller than the cutoff while the other branch
is predicted to be larger than the cutoff. In this case again,
both branches are executed sequentially. Without loss of
generality, assume that the second branch is predicted to be
small. In this case, we have w2 ≤ µκ. This first branch is
thus executed according to the sequential mode, so we have
D2 = d2 = w2. It follows that D2 ≤ µκ. For the first
branch, which is executed according to the oracle mode, we
can exploit the induction hypothesis which is D1 ≤ ρd1. We
conclude as follows:

D= D1 +D2 + 1 + φ
≤ ρd1 + µκ+ 1 + φ
≤ ρd1 + (1 + max (τ, µκ) + φ)
≤ ρ (d1 + 1)
≤ ρ (max (d1, d2) + 1)
≤ ρd

�

This ends our analysis of the depth. Now, let us look at
the work. The fact that every call to the oracle can induce a
cost φ can lead the work to be multiplied by φ. For example,
consider a program made of a complete tree built using n−1
sequential tuples, and leading to n parallel tuples generating
2n values as leaves. The raw work is equal to (n−1)+n+2n,
and the total work is (n−1)+nφ+2n. Thus,W ≤ φ

4w and
this is tight for large values of n. This means that a program
executed according to the oracle semantics can slow down
by as much as φ/4.

The problem with the above example is that the oracle is
called infrequently—only at the leaves of the computation—
preventing us from amortizing the cost of the oracle towards
larger pieces of computations. Fortunately, most programs
do not exhibit this pathological behavior, because parallel
tuples are often performed close to the root of the computa-
tion, allowing us to detect smaller pieces of work early.

One way to prevent the oracle from being called on
smaller pieces of work is to make sure that it is called at
regular intervals. For proving a strong bound on the work,
we will simply assume that the oracle is not called on small
tasks by restricting our attention to balanced programs. To
this end, we define balanced programs as programs that call
the oracle only on expressions that are no smaller than some
constant γ off from the value κ

µ , for some γ ≥ 1. Note that
we use κ

µ as a target and not κ so as to accomodate possible
over-estimations in the estimations of raw work. The formal
definition follows.

Definition 3.1 (Balanced programs) For γ ≥ 1, a program
or expression e is γ-balanced if evaluating e in the oracle
mode invokes the oracle only for subexpressions whose raw
work is no less than κ

µγ .

Note that if a program is γ-balanced and if γ < γ′, then this
program is also γ′-balanced. We will later give a sufficient
condition for proving that particular programs are balanced
(§3.4).

Theorem 3.3 (Work with a realistic oracle) Assume e ⇓orc
v, (w, d), (W,D) where e is a γ-balanced program.

W ≤
(

1 +
µ(τ + γφ)

κ+ 1

)
w.

Proof We establish the following slightly tighter inequality.

W ≤
(

1 +
τ

κ/µ + 1
+

φ

κ/(µγ) + 1

)
w.

The bound is indeed tighter because γ ≥ 1 and µ ≥ 1.
Define κ′ as a shorthand for κ/µ and κ′′ as a shorthand for
κ/(µγ). Note that, because γ ≥ 1, we have κ′′ ≤ κ′. Let x+

be defined as the value x when x is nonnegative and as zero
otherwise. We prove by induction that:

W ≤ w + τ
⌊
(w−κ)+
κ′+1

⌋
+ φ

⌊
(w−κ′′)

+

κ′′+1

⌋

This is indeed a strengthened result because we have:

τ

⌊
(w−κ′)

+

κ′+1

⌋
≤ τ w

κ′+1 ≤
τ

κ/µ+1 w

and φ

⌊
(w−κ′′)

+

κ′′+1

⌋
≤ φ w

κ′′+1 ≤
φ

κ/(µγ) + 1 w

The proof is conducted by induction on the derivation of
the reduction hypothesis.
• For a rule with zero premises, which describe an atomic

operation, we have W = w = 1, so the conclusion is
satisfied.
• For a rule with a single premise, the induction hypoth-

esis is:

W ≤ w + τ

⌊
(w−κ′)

+

κ′+1

⌋
+ φ

⌊
(w−κ′′)

+

κ′′+1

⌋

So, we can easily derive the conclusion:

W + 1 ≤ (w + 1) + τ

⌊
((w+1)−κ′)

+

κ′+1

⌋
+ φ

⌊
((w+1)−κ′′)

+

κ′′+1

⌋



• For a rule with two premises, we exploit the mathemat-
ical inequality

⌊
n
q

⌋
+
⌊
m
q

⌋
≤
⌊
n+m
q

⌋
. We have:

W = W1 +W2 + 1

≤ w1 + τ

⌊
(w1−κ′)

+

κ′+1

⌋
+ φ

⌊
(w1−κ′′)

+

κ′′+1

⌋
+ w2 + τ

⌊
(w2−κ′)

+

κ′+1

⌋
+ φ

⌊
(w2−κ′′)

+

κ′′+1

⌋
+ 1

≤ w + τ

⌊
(w1−κ′)

+
+(w2−κ′)

+

κ′+1

⌋
+ φ

⌊
(w1−κ′′)

+
+(w2−κ′′)

+

κ′′+1

⌋
To conclude, we need to establish the following two mathe-
matical inequalities:

(w1 − κ′)+ + (w2 − κ′)+ ≤ ((w1 + w2 + 1)− κ′)+

(w1 − κ′′)+ + (w2 − κ′′)+ ≤ ((w1 + w2 + 1)− κ′′)+

The two equalities can be proved in a similar way. Let us
establish the first one. There are four cases to consider. First,
if both w1 and w2 are less than κ′, then the right-hand side
is zero, so we are done. Second, if both w1 and w2 are
greater than κ′, then all the expressions are nonnegative, and
we are left to check the inequality w1 − κ′ + w2 − κ′ ≤
w1 + w2 + 1 − κ′. Third, if w1 is greater than κ′ and w2 is
smaller than κ′, then the inequality becomes (w1 − κ′)+ ≤
((w1 − κ′) + (w2 + 1))

+, which is clearly true. The case
w1 ≥ κ′ and w2 < κ′ is symmetrical. This concludes the
proof.
• Consider now the case of a parallel tuple where both

branches are predicted to involve more than κ units of work.
This implies w1 ≥ κ′ and w2 ≥ κ′. In this case, a parallel
task is created. Note that, because κ′′ ≤ κ′, we also have
w1 ≥ κ′′ and w2 ≥ κ′′. So, all the values involved in the fol-
lowing computations are nonnegative. Using the induction
hypotheses, we have:

W = W1 +W2 + 1 + τ + φ

≤ w1 + τ
⌊
w1−κ′

κ′+1

⌋
+ φ

⌊
w1−κ′′

κ′′+1

⌋
+ w2 + τ

⌊
w2−κ′

κ′+1

⌋
+ φ

⌊
w2−κ′′

κ′′+1

⌋
+ 1 + τ + φ

≤ (w1 + w2 + 1) + τ(
⌊
w1−κ′

κ′+1

⌋
+
⌊
w2−κ′

κ′+1

⌋
+ 1)

+ φ(
⌊
w1−κ′′

κ′′+1

⌋
+
⌊
w2−κ′′

κ′′+1

⌋
+ 1)

≤ w + τ
⌊
(w1−κ′)+(w2−κ′)+(κ′+1)

κ′+1

⌋
+ φ

⌊
(w1−κ′′)+(w2−κ′′)+(κ′′+1)

κ′′+1

⌋
≤ w + τ

⌊
(w1+w2+1)−κ′

κ′+1

⌋
+ φ

⌊
(w1+w2+1)−κ′′

κ′′+1

⌋
≤ w + τ

⌊
w−κ′

κ′+1

⌋
+ φ

⌊
w−κ′′

κ′′+1

⌋
• Assume now that the two branches are predicted to be

less than the cutoff. This implies w1 ≤ κ′ and w2 ≤ κ′.
Both these tasks are executed sequentially, so W1 = w1

and W2 = w2. Since the program is γ-balanced, we have

w1 ≥ κ′′ and w2 ≥ κ′′. Those inequalities ensure that we
are able to pay for the cost of calling the oracle, that is, the
cost φ. Indeed, since we have w1 + w2 + 1− κ′′ ≥ κ′′ + 1,
we know that

⌊
w1+w2+1−κ′′

κ′′+1

⌋
≥ 1. Therefore:

W = W1 +W2 + 1 + φ
≤ w1 + w2 + 1 + φ

≤ (w1 + w2 + 1) + φ
⌊
w1+w2+1−κ′′

κ′′+1

⌋
≤ w + τ

⌊
(w−κ′)

+

κ′+1

⌋
+ φ

⌊
w−κ′′

κ′′+1

⌋
• It remains to consider the case where one branch is

predicted to be bigger than the cutoff while the other is
predicted to be smaller than the cutoff. For example, assume
w1 ≥ κ′ and w2 ≤ κ′. The parallel tuple is thus executed as
a sequential tuple. The first task is executed in oracle mode,
whereas the second task is executed in the sequential mode.
For the first task, we can invoke the induction hypothesis
W1 ≤ w1 + τ

⌊
w1−κ′

κ′+1

⌋
+ φ

⌊
w1−κ′′

κ′′+1

⌋
. For the second

task, which is executed sequentially, we have W2 = w2.
Moreover, the regularity hypothesis gives us w2 ≥ κ′′.
Hence, we have

⌊
w2+1
κ′′+1

⌋
≥ 1. We conclude as follows:

W = W1 +W2 + 1 + φ

≤ w1 + τ
⌊
w1−κ′

κ′+1

⌋
+ φ

⌊
w1−κ′′

κ′′+1

⌋
+ w2 + 1 + φ

≤ w1 + τ
⌊
w1−κ′

κ′+1

⌋
+ φ

⌊
w1−κ′′

κ′′+1

⌋
+ w2 + 1 + φ

⌊
w2+1
κ′+1

⌋
≤ w + τ

⌊
w1+w2+1−κ′

κ′+1

⌋
+ φ

⌊
w1+w2+1−κ′′

κ′′+1

⌋
≤ w + τ

⌊
w−κ′

κ′+1

⌋
+ φ

⌊
w−κ′′

κ′′+1

⌋
�

We are now ready to combine the version of Brent’s theo-
rem adapated to our cost semantics with the bounds that we
have established for the total work and depth in γ-balanced
parallel programs executed under the oracle semantics.

Theorem 3.4 (Execution time with a realistic oracle)
Assume an oracle that costs φ and makes an error by a
factor not exceeding µ. Assume κ > τ , which is always the
case in practice. The execution time of a parallel γ-balanced
program on a machine with P processors under the oracle
semantics with a greedy scheduler does not exceed the value(

1 +
µ(τ + γφ)

κ

)
w

P
+ (κµ+ φ+ 1) d.

Proof The bound follows by the version of Brent’s theorem
adpated to our cost semantics (Theorem 2.2), and by the
bounds established in Theorem 3.3 and Theorem 3.2. For
simplicity, we have replaced the denominator κ + 1 with κ.
This change does not loosen the bound significantly because
κ is usually very large in front of a unit cost. �
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3.3 Choice of the cutoff
Theorem 3.4 shows that the running time of a parallel pro-
gram can be controlled by changing the constant κ; the for-
mula, however, reveals an interesting tradeoff: we can re-
duce task-creation overheads but this comes at the cost of
increasing the depth. To see this connection better, consider
the bound that appears in the statement of Theorem 3.4 and
notice that as κ increases the work (first) term decreases but
the depth (second) term increases. Figure 4 illustrates a con-
crete instance of the bound for a hypothetical computation
for fixed constants but different raw work and raw depth. The
exact values of the constant and the raw work and depth are
not relevant to our discussion; constants are fixed at some
reasonable values consistent with our experimental obser-
vations. The work and depth are consistent with a program
whose raw work is linear in the input size and whose raw
depth is logarithmic in the input size.

As Figure 4 illustrates, the parallel run time decreases as
we increase κ up to some inflection point and then starts
increasing. We compute the optimal value for κ by solving
for the root of the derivative. We obtain:

κ∗ =
√
τ + γφ ·

√
w

Pd
.

Thus, with prior knowledge of the raw work and raw depth of
a computation, we can pick κ to ensure efficiency of parallel
programs.

Such knowledge, however, is often unavailable. As we
now show, we can improve efficiency of parallel programs
by selecting a fixed κ that guarantees that the task creation
overheads can be bounded by any constant fraction of the
raw work, without increasing the depth of the computation
significantly.

Theorem 3.5 (Run time with fixed κ) Consider an oracle
with φ cost and µ error. For any γ ≥ 1 and for any constant r
such that 0 < r < 1, there exists a constant κ and a constant
c such that the evaluation with the oracle semantics of a

γ-balanced program reduces task creation overheads to a
fraction r of the raw work, while in the same time increasing
the total depth by no more than a factor c

r . With a greedy
scheduler, the total parallel run time on P processors of such
a program therefore does not exceed (1 + r)wP + c

r d.

Proof Consider a particular γ-balanced program with raw
work w and raw depth d, and consider its evaluation under
the oracle semantics. By Theorem 3.3 we know that total
work does not exceed(

1 +
µ(τ + γφ)

κ

)
w.

To achieve the desired bound on execution time, we take
κ = µ(τ+γφ)

r . Plugging this value of κ into the formula
yields (1 + r)w for total work, showing that task creation
overheads are reduced to a fraction r of the raw work.

Furthermore, by Theorem 3.2 we know that the total
depth is bounded by (max (τ, µκ)+φ+1) d. Plugging in the
same value for κ yields the following bound on total depth:

D ≤
(
max

(
τ,
µ2(τ + γφ)

r

)
+ φ+ 1

)
d.

Using µ ≥ 1 and r < 1, we can derive the inequality

D ≤
(
µ2(τ + γφ)

r
+
φ+ 1

r

)
d.

Choosing c = µ2(τ + γφ) + φ + 1 therefore ensures that
the total depth does not exceed the desired bound c

r d. The
run-time bound follows by an application of Brent’s theorem
(Theorem 2.2). �

This final theorem enables us to reduce task creation
overheads to any desired constant fraction of the raw work
by choosing a κ that is independent of the specific inputs.
This comes at the cost of increasing the depth, but only
by a constant factor of c

r . In the common case, when the
work is asymptotically greater than depth, e.g., Θ(n) versus
O(log n), the resulting run-time guarantees that the increase
in depth remain small: specifically, the depth term itself is
a fraction of the work term for all but a constant number of
small inputs.

3.4 Balanced programs
Our bounds with the realistic oracle hold only for what we
called γ-balanced programs, where the oracle is not called
on small tasks. This assumption can be satisfied by call-
ing the oracle “regularly.” It seems likely that this assump-
tion would hold for many programs without requiring any
changes to the program code. In this section, we show that
recursive, divide-and-conquer programs are γ-balanced.

To that end, we introduce the notion of γ-regularity. Intu-
itively, a program is γ-regular if, between any two calls to the
oracle involved in the execution of this program, the amount



of work does not reduce by more than a factor γ. We will
then establish that any γ-regular program is a γ-balanced
program. Before giving the formal definition of γ-regularity,
we need to formally define what it means for a parallel tuple
to be dominated by another parallel tuple.

Definition 3.2 (Domination of a parallel branch) A branch
e of a parallel tuple is said to be dominated by the branch
ei of another parallel tuple (|e1, e2|) if the expression e is
involved in the execution of the branch ei.

Definition 3.3 (Regularity of a parallel program) A pro-
gram is said to be γ-regular if, for any parallel branch in-
volving, say, w units of raw work, either w is very large
compared with κ/(µγ) or this branch is dominated by an-
other parallel branch that involves less than γw units of
work.

The condition “w is very large compared with κ/(µγ)” is
used to handle the outermost parallel tuples, which are not
dominated by any other tuple.

Note that the regularity of a program is always greater
than 2. Indeed, if one of the branch of a parallel tuple is
more than half of the size of the entire tuple, then the other
branch must be smaller than half of that size. On the one
hand, algorithms that divide their work in equal parts are
γ-regularity with γ very close to 2. On the other hand, ill-
balanced programs can have a very high degree of regularity.
Observe that every program is∞-regular.

For example, consider a program that traverses a com-
plete binary tree in linear time. A call on a tree of size n
has raw work nc, for some constant c. If the tree is not a
leaf, its size n has to be at least 3. The next recursive call
involves raw work

⌊
n−1
2

⌋
c, The ratio between those two

values is equal n/
⌊
n−1
2

⌋
. This value is always less than 3

when n ≥ 3. So, the traversal of a complete binary tree is a
3-regular algorithm.

The following lemma explains how the regularity as-
sumption can be exploited to ensure that the oracle is never
invoked on tasks of size less than κ/(µγ). This suggests that,
for the purpose of amortizing well the costs of the oracle, a
smaller regularity is better.

Lemma 3.1 (From regularity to balanced)
If a program is γ-regular then it is γ-balanced.

Proof We have to show that, during the execution of a γ-
regular program according to oracle semantics, the oracle is
never invoked on subexpressions involving less than κ/(µγ)
raw work. Consider a particular subexpression e involving
w units of raw work, and assume that the oracle is invoked
on this subexpression. Because the oracle is being invoked,
e must correspond to the branch of a parallel tuple. By the
regularity assumption, either w is very large compared with
κ/(µγ), in which case the conclusion holds immediately, or
the branch e is dominated by a branch ei that involves that
involves w′ units of work, with w′ ≤ γw. For the latter case,

type cost

type estimator

val create: unit -> estimator

val report: estimator× cost× float -> unit

val predict: estimator× cost-> float

Figure 5. The signature of the estimator data structure

we need to establish w ≥ κ/(µγ). To that end, it suffices
to prove that w′ ≥ κ/µ, which amounts to showing that the
amount of raw work associated with the dominating branch
ei contains at least κ/µ raw work.

We conclude the proof by establishing the inequality
w′ ≥ κ/µ. Because the oracle is being invoked on the
subexpression e, it means that e is being evaluated in the
mode orc. Therefore, the call to the oracle on the dominat-
ing branch ei must have predicted ei to contain more than
κ raw work. (Otherwise ei and its subexpression e would
have both been executed in the sequential mode.) Given that
the oracle makes error by no more than a factor µ, if ei is
predicted to contain more than κ units of raw work, then ei
must contain at least κ/µ units of raw work. So, w′ ≥ κ/µ.
�

4. Oracle Scheduling
As we describe in this section, we can realize the oracle
semantics by using a (φ, µ)-estimator that requires φ time to
estimate actual run-time of parallel tasks within a factor of
no more than µ. We refer to the combination of an estimator
with a parallel scheduler as an (φ, µ)-oracle-scheduler.

Run-time estimators. To realize the oracle semantics, we
require the user to provide a cost function for each function
in the program and rely on an estimator for estimating ac-
tual work using the user-provided cost information. When
applied to an argument v, a cost function of f returns the
abstract cost of the application of f to v. The cost is passed
to the estimator, which uses the cost to compute an estimate
of the actual execution time, that is, the raw work, of the ap-
plication. Figure 5 shows a signature for the estimator. To
perform accurate estimates, the estimator utilizes profiling
data obtained from actual execution times. The sampling op-
eration report (t, c, e) adds a cost c and an execution
time e to the set of samples in an estimator t. An estimate
of the actual execution time is obtained by calling predict.
Given an estimator t and cost c, the call predict (t, c)

returns a predicted execution time.

Compilation. To support oracle scheduling with estima-
tors, we need compilation support to associate an estimator
with each function defined in the program code, to derive
a sequential and an oracle version for each function, and to
evaluate tuples sequentially or in parallel depending on the
approximations performed by the estimator.

For simplicity, we assume that constituents of parallel
tuples are function applications, i.e., they are of the form



(|f1 v1, f2 v2|). Note that this assumption does not cause loss
of expressiveness, because a term e can always be replaced
by a trivial application of a “thunk”, a function that ignores
its argument (typically of type “unit”) and evaluates e to a
dummy argument. Throughout, we write “fun f.x.eb [ec]”
to denote a function “fun f.x.eb” for which the cost function
for the body eb is described by the expression ec. This
expression ec, which may refer to the argument x, should
be an expression whose evaluation always terminates and
produces an cost of type cost.

To associate an estimator with each function, in a sim-
ple pass over the source code, we allocate and initialize
an estimator for each syntactic function definition. For ex-
ample, if the source code contains a function of the form
“fun f.x.eb [ec]”, then our compiler allocates an estimator
specific to that function definition. Specifically, if the vari-
able r refers to the allocated estimator, then the translated
function, written “fun f.x.eb [ec|r]”, is annotated with r.

The second pass of our compilation scheme uses the allo-
cated estimators to approximate the actual raw work of func-
tion applications and relies on an MakeBranch function to
determine whether an application should be run in the oracle
or in the sequential mode. Figure 6 defines more precisely
the second pass. We write JvK for the translation of a value
v, and we write JeKα for the translation of the expression
e according to the semantics α, which can be either seq or
orc. When specifying the translation, we use triples, quadru-
ples, projections, sequence, if-then-else statements, and unit
value; these constructions can all be easily defined in our
core programming language.

Translation of values other than functions does not de-
pend on the mode and is relatively straightforward. We trans-
late functions, which are of the form “fun f.x.eb [ec|r]”,
into a quadruple consisting of the estimator r, a sequential
cost function, the sequential version of the function, and the
oracle versions of the function. Translation of a function ap-
plication depends on the mode. In the sequential mode, the
sequential version of the function is selected (by projecting
the third component of the function) and used in the appli-
cation. Similarly, in the oracle mode, the oracle version of
the function is selected and used in the application. To trans-
late a tuple, we recursively translate the subexpression, while
preserving the mode. Similarly, translation of the let, pro-
jections, and case constructs are entirely structural.

In the sequential mode, a parallel tuple is turned into a
simple tuple. In the oracle mode, the translation applies the
oracle-based scheduling policy with the aid of the meta-
function MakeBranch. This meta-function, shown in Fig-
ure 7, describes the template of the code generated for
preparing the execution of a parallel tuple. MakeBranch ex-
pects a (translated) function f and its (translated) argument
v, and it returns a boolean b indicating whether the applica-
tion of f to v is expected to take more or less time than the
cutoff κ, and a thunk t to execute this application. On the

MakeBranch (f, v) ≡
let r = proj1 f in

letm = proj2 f v in
let b = predict(r,m) > κ in

let fun kseq () = proj3 f v in
let fun k′seq () = MeasuredRun(r,m, kseq) in
let fun korc () = proj4 f v in
let k = if b then korc else k

′
seq in

(b, k)

MeasuredRun (r,m, k) ≡
let t = get time () in
let v = k () in
let t′ = get time () in
report (r,m, (t′ − t));
v

Figure 7. Auxiliary meta-functions used for compilation.

one hand, if the application is predicted to take more time
than the cutoff (in which case b is true), then the thunk t cor-
responds to the application of the oracle-semantics version
of the function f . On the other hand, if the application is
predicted to take less time than the cutoff (in which case b is
false), then the thunk t corresponds to the application of the
sequential-semantics version of the function f . Moreover,
in the latter case, the time taken to execute the application
sequentially is measured. This time measure is reported to
the estimator by the auxiliary meta-function MeasuredRun

(Figure 7), so as to enable its approximations.
Observe that the translation introduces many quadruples

and applications of projection functions. However, in prac-
tice, the quadruples typically get inlined so most of the pro-
jections can be computed at compile time. Observe also
that the compilation scheme involves some code duplica-
tion, because every function is translated once for the se-
quential mode and once for the oracle mode. In theory, the
code could grow exponentially when the code involves func-
tions defined inside the body of other functions. In practice,
the code the growth is limited because functions are rarely
deeply nested. If code duplication was a problem, then we
can use flattening to eliminate deep nesting of local func-
tions, or pass the mode α as an extra argument to functions.

Cost as complexity functions. The techniques described in
this section require the programmer to annotate each func-
tion defined in the program with a cost function that, when
applied to the argument, returns an abstract cost value. This
abstract cost value is then used by an estimator, which is also
left abstract, to approximate the actual raw work of a task.
For our bounds to apply, complexity expressions should re-
quire constant time to evaluate.

Predicting the raw work is only needed for sequential
tasks, so the estimator actually needs to return an approx-
imation of the actual run time of a sequential task. A cru-



JxK ≡ x

J(v1, v2)K ≡ (Jv1K, Jv2K)

Jinl vK ≡ inl JvK
Jinr vK ≡ inr JvK
Jfun f.x.eb [ec|r]K ≡ (r, (fun .x.JecKseq), (fun f.x.JebKseq), (fun f.x.JebKorc))
JvKα ≡ JvK
Jv1 v2Kseq ≡ proj3 Jv1K Jv2K
Jv1 v2Korc ≡ proj4 Jv1K Jv2K
J(e1, e2)Kα ≡ (Je1Kα, Je2Kα)

Jlet x = e1 in e2Kα ≡ let x = Je1Kα in Je2Kα

Jfst vKα ≡ fst JvK
Jsnd vKα ≡ snd JvK
Jcase v of {inl x.e1, inr x.e2}Kα ≡ case JvK of {inl x.Je1Kα, inr x.Je2Kα}
J(|f1 v1, f2 v2|)Kseq ≡

(
proj3 Jf1K Jv1K, proj3 Jf2K Jv2K

)
J(|f1 v1, f2 v2|)Korc ≡

let (b1, k1) = MakeBranch(Jf1K, Jv1K) in
let (b2, k2) = MakeBranch(Jf2K, Jv2K) in
if (b1 && b2) then (|k1 (), k2 ()|) else (k1 (), k2 ())

Figure 6. Translation for oracle scheduling.

cial property of the abstract cost is that it should be ab-
stract enough that the programmer can write the cost func-
tions without necessarily knowing the details of the hard-
ware that the programs will be executed on. Yet, abstract
costs should provide sufficient information to estimate the
actual run times.

Asymptotic complexity specifications serve as a natural
cost function by satisfying both of these properties. Since
they eliminate hardware specific constants, they can be spec-
ified easily. Using complexity functions, we can approxi-
mate the actual run time of sequentially executed functions
by simply determining the constants hidden by the asymp-
totic complexity notation. Such an approximation can be
performed by using the least squares method or similar tech-
niques for data fitting from known samples.

In our implementation described in Section 5, we imple-
ment an approach based on complexity functions. We de-
fine cost as an integer, which represents the application of
the complexity function applied to the input size. We ap-
proximate the actual run time by calculating a single con-
stant, assuming that the constants in all terms of the asymp-
totic complexity are the same. Although assuming a single
constant can decrease the precision of the approximations,
we believe that it suffices because we only have to compute
lower bounds for our functions; i.e., we only need to deter-
mine whether they are “big enough” for parallel execution.

5. Implementation
In this section, we describe the implementation of our
scheduling technique in an actual language and system. In
our approach, source programs are written in our own di-

type tree =

| Leaf of int

| Node of int * tree * tree

let size = function

| Leaf _ -> 1

| Size (s,_,_) -> s

let rec sum t = Oracle.complexity (size t);

match t with

| Leaf n -> n

| Node (size,t1,t2) ->

let (n1,n2) = (| sum t1, sum t2 |) in

n1 + n2

Figure 8. An example parallel program.

alect of the Caml language [26], which is a strict functional
language. Our Caml dialect corresponds to the core Caml
language extended with syntax for parallel pairs and com-
plexity annotations. Figure 8 shows a program implemented
in our Caml dialect. This recursive program traverse a binary
tree to compute the sum of the values stored in the leaves.

We use the Caml type checker to obtain a typed syntax
tree, on which we perform the oracle-scheduling translation
defined in Figure 6. We then produce code in the syntax of
Parallel ML (PML) [17], a parallel language close to Stan-
dard ML. The translation from Caml to PML is straight-
forward because the two languages are relatively similar.
We compile our source programs to x86-64 binaries us-
ing Manticore, which is the optimizing PML compiler. The
Manticore run-time system provides a parallel, generational



garbage collector that is crucial for scaling to more than four
processors, because functional programs, such as the ones
we consider, often involve heavy garbage-collection loads.
Further details on Manticore can be found elsewhere [16].
In the rest of this section, we explain how we compute the
constant factors, and we also give a high-level description
of the particular work-stealing scheduler on top of which we
are building the implementation of our oracle scheduler.

Run-time estimation of constants. The goal of the oracle
is to make relatively accurate execution time predictions at
little cost. Our approach to implementing the oracle consists
of evaluating a user-provided asymptotic complexity func-
tion, and then multiplying the result by an appropriate con-
stant factor. Every function has its own constant factor, and
the value for this constant factor is stored in the estimator
data structure. In this section, we discuss the pratical imple-
mentation of the evaluation of constant factors.

In order for the measurement of the constant to be
lightweight, we simply compute average values of the con-
stant. The constant might evolve over time, for example if
the current program is sharing the machine with another pro-
gram, a series of memory reads by the other program may
slow down the current program. For this reason, we do not
just compute the average across the entire history, but in-
stead maintain a moving average, that is, an average of the
values gathered across a certain number of runs.

Maintaining averages is not entirely straightforward. One
the one hand, storing data in a memory cell that is shared
by all processors is not satisfying because it would involve
some synchronization problems. On the other hand, using a
different memory cell for every processor is not satisfying ei-
ther, because it leads to slower updates of the constants when
they change. In particular, in the beginning of the execution
of a program it is important that all processors quickly share
a relatively good estimate of the constant factors. For these
reasons, we have opted for an approach that uses not only a
shared memory cell but also one data structure local to every
processor.

The shared memory cell associated with each estimator
contains the estimated value for the constant that is read by
all the processors when they need to predict execution times.
The local data structures are used to accumulate statistics on
the value of the constant. Those statistics are reported on
a regular basis to the shared memory cell, by computing a
weighted mean between the value previously stored in the
shared memory cell and the value obtained out of the local
data structure. We treat initializations somewhat specially:
for the first few measures, a processor always begins by
reporting its current average to the shared memory cell. This
ensures a fast propagation of the information gathered from
the first runs, so as to quickly improve the accuracy of the
predictions.

When implementing the oracle, we faced three technical
difficulties. First, we had to pay attention to the fact that the

memory cells allocated for the different processors are not
allocated next to each other. Otherwise, those cells would
fall in the same cache line, in which case writing in one
of these cells would make the other cells be removed from
caches, making subsequent reads more costly. Second, we
observed that the time measures typically yield a few out-
liers. Those are typically due to the activity of the garbage
collector or of another program being scheduled by the op-
erating system on the same processor. Fortunately, we have
found detecting these outliers to be relatively easy because
the measured times are at least one or two orders of magni-
tude greater than the cutoff value. Third, the default system
function that reports the time is only accurate by one mi-
crosecond. This is good enough when the cutoff is greater
than 10 microseconds. However, if one were to aim for a
smaller cutoff, which could be useful for programs exhibit-
ing only a limited amount of parallelism, then more accurate
techniques would be required, for example using the specific
processor instructions for counting the number of processor
cycles.

Work stealing. We implement our oracle scheme on top
of the work stealing scheduler [11]. In this section we out-
line the particular implementation of work stealing that we
selected from the Manticore system. Our purpose is to un-
derstand what exactly contributes to the scheduling cost τ in
our system.

In Manticore’s work-stealing scheduler, all system pro-
cessors are assigned to collaborate on the computation. Each
processor owns a deque (doubly-ended queue) of tasks rep-
resented as thunks. Processors treat their own deques like
call stacks. When a processor starts to evaluate a parallel-
pair expression, it creates a task for the second subexpres-
sion of the pair and pushes the task onto the bottom of the
deque. Processors that have no work left try to steal tasks
from others. More precisely, they repeatedly select a random
processor and try to pop a task from this processor’s deque.

Manticore’s implementation of work stealing [34] adopts
a code-specialization scheme, called clone translation, taken
from Cilk-5’s implementation [19].2 With clone translation,
each parallel-pair expression is compiled into two versions:
the fast clone and the slow clone. The purpose of a fast clone
is to optimize the code that corresponds to evaluating on the
local processor, whereas the slow clone is used when the sec-
ond branch of a parallel-pair is migrated to another proces-
sor. A common aspect of between clone translation and our
oracle translation (Figure 6) is that both generate specialized
code for the sequential case. But the clone translation dif-
fers in that there is no point at which parallelism is cut off
entirely, as the fast clone may spawns subtasks.

The scheduling cost involved in the fast clone is a (small)
constant, because it involves just a few local operations, but
the scheduling cost of the slow clone is variable, because

2 In the Cilk-5 implementation, it is called clone compilation.



it involves inter-processor communication. It is well estab-
lished, both through analysis and experimentation, that (with
high probability) no more than O(PD) steals occur during
the evaluation [11]. So, for programs that exhibit parallel
slackness (W � PD), we do not need to take into ac-
count the cost of slow clones because there are relatively few
of them. We focus only on the cost of creating fast clones,
which correspond to the cost τ . A fast clone needs to pack-
ages a task, push it onto the deque and later pop it from the
deque. So, a fast clone is not quite as fast as the correspond-
ing sequential code. The exact slowdown depend on the im-
plementation, but in our case we have observed that a fast
clone is 3 to 5 times slower than a simple function call.

6. Empirical Evaluation
In this section, we evaluate the effectiveness of our imple-
mentation through several experiments. We consider results
from a range of benchmarks run on two machines with dif-
ferent architectures. The results show that, in each case, our
oracle implementation improves on the plain work-stealing
implementation. Furthermore, the results show that the ora-
cle implementation scales well with up to sixteen processors.

Machines. Our AMD machine has four quad-core AMD
Opteron 8380 processors running at 2.5GHz. Each core has
64Kb each of L1 instruction and data cache, and a 512Kb
L2 cache. Each processor has a 6Mb L3 cache that is shared
with the four cores of the processor. The system has 32Gb
of RAM and runs Debian Linux (kernel version 2.6.31.6-
amd64).

Our Intel machine has four eight-core Intel Xeon X7550
processors running at 2.0GHz. Each core has 32Kb each of
L1 instruction and data cache and 256 Kb of L2 cache. Each
processor has an 18Mb L3 cache that is shared by all eight
cores. The system has 1Tb of RAM and runs Debian Linux
(kernel version 2.6.32.22.1.amd64-smp). For uniformity, we
consider results from just sixteen out of the thirty-two cores
of the Intel machine.

Measuring scheduling costs. We report estimates of the
task-creation overheads for each of our test machines. To
estimate, we use a synthetic benchmark expression e whose
evaluation sums integers between zero and 30 million using
a parallel divide-and-conquer computation. We chose this
particular expression because most of its evaluation time is
spent evaluating parallel pairs.

First, we measure ws: the time required for executing a
sequentialized version of the program (a copy of the pro-
gram where parallel tuples are systematically replaced with
sequential tuples). This measure serves as the baseline. Sec-
ond, we measure ww: the time required for executing the
program using work stealing, on a single processor. This
measure is used to evaluated τ . Third, we measure wo: the
time required for executing a version of the program with
parallel tuples replaced with ordinary tuples but where we
still call the oracle. This measure is used to evaluate φ.

We then define the work-stealing overhead cw = ww

ws
.

We estimate the cost τ of creating a parallel task in work
stealing by computing ww−ws

n , where n is the number of
parallel pairs evaluated in the program. We also estimate the
cost φ of invoking the oracle by computing wo−ws

m , wherem
is the number of times the oracle is invoked. Our measures
are as follows.

Machine cw τ (µs) φ (µs)
AMD 4.86 0.09 0.18
Intel 3.90 0.18 0.94

The first column indicates that work stealing alone can
induce a slowdown by a factor of 4 or 5, for programs that
create a huge number of parallel tuples. Column two indi-
cates that the cost of creating parallel task τ is significant,
taking roughly between 200 and 350 processor cycles. The
last column suggests that the oracle cost φ is of the same
order of magnitude (φ is 2 to 5 times larger than τ ).

To determine a value for κ, we use the formula µ(τ+γφ)
r

from §3.2. Recall that r is the targette overhead for schedul-
ing costs. We aim for r = 10%. Our oracle appears to be
always accurate within a factor 2, so we set µ = 2. Our
benchmark programs are fairly regular, so we take γ = 3.
We then use the values for τ and φ specific to the machine
and evaluate the formula µ(τ+γφ)

r . We obtain 13µs for the
AMD machine and 60µs for the Intel machine. However,
we were not able to use a cutoff as small as 13µs because the
time function that we are using is only accurate up to 1µs.
For this reason, we doubled the value to 26µs. (One possibil-
ity to achieve greater accuracy would be to use architecture-
specific registers that are able to report on the number of
processor cycles involved in the execution of a task.)

In our experiments, we used κ = 26µs on the AMD
machine and κ = 61µs on the Intel machine.

Benchmarks. We used five benchmarks in our empirical
evaluation. Each benchmark program was originally written
by other researchers and ported to our dialect of Caml.

The Quicksort benchmark sorts a sequence of 2 million
integers. Our program is adapted from a functional, tree-
based algorithm [6]. The algorithm runs withO(n log n) raw
work and O(log2 n) raw depth, where n is the length of the
sequence. Sequences of integers are represented as binary
trees in which sequence elements are stored at leaf nodes and
each internal node caches the number of leaves contained in
its subtree.

The Quickhull benchmark calculates the convex hull of a
sequence of 3 million points contained in 2-d space. The al-
gorithm runs with O(n log n) raw work and O(log2 n) raw
depth, where n is the length of the sequence. The represen-
tation of points is similar to that of Quicksort, except that
leaves store 2-d points instead of integers.

The Barnes-Hut benchmark is an n-body simulation that
calculates the gravitational forces between n particles as
they move through 2-d space [4]. The Barnes-Hut compu-
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Figure 9. Comparison of the speedup on sixteen processors. Higher bars are better.
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Figure 10. Comparison of execution times (normalized) on a single processor. Lower bars are better.

tation consists of two phases. In the first, the simulation vol-
ume is divided into square cells via a quadtree, so that only
particles from nearby cells need to be handled individually
and particles from distant cells can be grouped together and
treated as large particles. The second phase calculates grav-
itational forces using the quadtree to accelerate the compu-
tation. The algorithm runs with O(n log n) raw work and
O(log n) raw depth. Our benchmark runs 10 iterations over
100,000 particles generated from a random Plummer distri-
bution [33]. The program is adapted from a Data-Parallel
Haskell program [31]. The representation we use for se-
quences of particles is similar to that of Quicksort.

The SMVM benchmark multiplies an m× n matrix with
an n × 1 dense vector. Our sparse matrix is stored in the
compressed sparse-row format. The program contains paral-
lelism both between dot products and within individual dot
products. We use a sparse matrix of dimensionm = 500,000
and n = 448,000, containing 50,400,000 nonzero values.

The DMM benchmark multiplies two dense, square n×n
matrices using the recursive divide-and-conquer algorithm

of Frens and Wise [18]. We have recursion go down to scalar
elements. The algorithm runs with O(n3) raw work and
O(log n) raw depth. We selected n = 512.

Implementing complexity functions. Our aim is to make
complexity functions fast, ideally constant time, so that we
can keep oracle costs low. But observe that, in order to com-
plete in constant time, the complexity function needs access
to the input size in constant time. For four of our benchmark
programs, no modifications to the algorithm is necessary, be-
cause the relevant data structures are already decorated with
sufficient size information. The only one for which we make
special provisions is SMVM. The issue concerns a subprob-
lem of SMVM called segmented sums [9]. In segmented
sums, our input is an array of arrays of scalars, e.g.,

[[8, 3, 9], [2], [3, 1][5]]

whose underlying representation is in segmented format.
The segmented format consists of a pair of arrays, where
the first array contains all the elements of the subarrays and



second contains the lengths of the subarrays.

([8, 3, 9, 2, 3, 1, 5], [3, 1, 2, 1])

The second array is called the segment descriptor. The ob-
jective is to compute the sum of each subarray,

[20, 2, 4, 5],

There are two sources of parallelism in segmented sums:
(1) within the summation of each subarray and (2) between
different subarray sums. We use divide-and-conquer algo-
rithms to solve each case. In the first case, our algorithm is
just an array summation, and thus the complexity function
is straightforward to compute in constant time from the seg-
ment descriptor. The second case is where we make the spe-
cial provisions. For this case, we use a parallel array-map al-
gorithm to compute all the subarray sums in parallel. The is-
sue is that the complexity of performing a group of subarray
sums is proportional to the sum of the sizes of those subar-
rays. So, to obtain this size information in constant time, we
modify our segmented-array representation slightly so that
we store a cached tree of subarray sizes rather than just a flat
array of subarray sizes.

([8, 3, 9, 2, 3, 1, 4, 5], 7

4

3 1

3

2 1

)

To summarize, in order to write a constant-time complexity
function, we changed the existing SMVM program to use
a tree data structure, where originally there was an array
data structure. Building the tree can be done in parallel, and
the cost of building can be amortized away by reusing the
sparse matrix multiple times, as is typically done in iterative
solvers.

Performance. For every benchmark, we measure several
values. Tseq denotes the time to execute the sequential ver-
sion of the program. We obtain the sequential version of the
program by replacing each parallel tuple with an ordinary tu-
ple and erasing complexity functions, so that the sequential
version includes none of the task-creation overheads. TPpar
denotes the execution time with work stealing on P pro-
cessors. TPorc denotes the execution time of our oracle-based
work stealing on P processors.

The most important results of our experiments come from
comparing plain work stealing and our oracle-based work
stealing side by side. Figure 9 shows the speedup on sixteen
processors for each of our benchmarks, that is, the values
T 16
par/Tseq and T 16

orc/Tseq. The speedups show that, on sixteen
cores, our oracle implementation is always between 4% and
76% faster than work stealing.

The fact that some benchmarks benefit more from our or-
acle implementation than others is explained by Figure 10.
This plot shows execution time for one processor, normal-
ized with respect to the sequential execution times. In other
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words, the values plotted are 1, T 1
orc/Tseq and T 1

par/Tseq. The
values T 1

orc/Tseq range from 1.03 to 1.13 (with an average
of 1.07), indicating that the task-creation overheads in the
oracle implementation do not exceed 13% of the raw work
in any benchmark. The cases where we observe large im-
provements in speedup are the same cases where there is a
large difference bewteen sequential execution time and plain
work-stealing execution time. When the difference is large,
there is much room for our implementation to improve on
work stealing, whereas when the difference is small we can
only improve the execution time by a limited factor.

Figure 11 shows speedup curves for each of our experi-
ments, that is, values of TPpar/Tseq and TPorc/Tseq against the
number of processors P on our Intel machine; the measure-
ments on the AMD machine show similar trends but quanti-
tatively better results for the oracle versions.

The curves show that our oracle implementation gener-
ally scales well up to sixteen processors.

There is one exception, which is the quickhull benchmark
on the AMD machine. For this benchmark, the curve tails off
after reaching twelve processors. We need to conduct further
experiments to understand the cause, which is probably due
to a lack of parallelism in the program. Notice, however, that
our scheduler does not fall below work stealing.

7. Related Work
Cutting off excess parallelism. This study is not the first
to propose using cost prediction to determine when to cut off
parallelism. One approach, developed in early work in func-
tional programing, uses list size to determine cut offs [24].
Using list size alone is limited, because the technique as-
sumes linear work complexity for every parallel operation.

Another way to handle cost prediction is to use the depth
and height of the recursion tree [30, 42]. But depth and
height are not, in general, the most direct means to pre-
dict the execution time of subcomputations. In our oracle
scheduling, we ask for either the programmer or compiler to
provide for each function a cost function that expresses the
asymptotic cost of applying the function.

Lopez et. al. take this approach as well, but in the con-
text of logic programming [27]. On the surface, their tech-
nique is similar to our oracle scheduling, except that their
cost estimators do not utilize profiling to estimate constant
factors. An approach without constant-factor estimation is
overly simplistic for modern processors, because it relies on
complexity function predicting execution time exactly. On
modern processors, execution time depends heavily on fac-
tors such as caching, pipelining, etc. and it is not feasible in
general to predict execution time from a complexity function
alone.

Reducing per-task costs. One approach to the granularity
problem is to focus on reducing the costs associated with
tasks, rather than limiting how many tasks get created. This
approach is taken by implementations of work stealing with

lazy task creation [15, 19, 23, 28, 34, 36]. In lazy task
creation, the work stealing scheduler is implemented so as
to avoid, in the common case, the major scheduling costs,
in particular, those of inter-processor communication. But,
in even the most efficient lazy task creation, there is still a
non-negligable scheduling cost for each implicit thread.

Lazy Binary Splitting (LBS) is an improvement to lazy
task creation that applies to parallel loops [40]. The crucial
optimization comes from extending the representation of
a task so that multiple loop iterations can be packed into
a single task. This representation enables the scheduler to
both avoid creating closures and executing deque operations
for most iterations. A limitation of LBS is that it addresses
only parallel loops whose iteration space is over integers.
Lazy Tree Splitting (LTS) generalizes LBS to handle parallel
aggregate operations that produce and consume trees, such
as map and reduce [5]. LTS is limited, however, by the fact
that it requires a special cursor data structure to be defined
for each tree data structure.

Amortizing per-task costs. Feitelson et al. study the gran-
ularity problem in the setting of distributed computing [2],
where the crucial issue is how to minimize the cost of inter-
processor communication. In their setting, the granularity
problem is modeled as a staging problem, in which there
are two stages. The first stage consists of a set of processor-
local task pools and the second stage consists of a global task
pool. Moving a task to the global task pool requires inter-
processor communication. The crucial decision is how of-
ten each processor should promote tasks from its local task
pool to the global task pool. We consider a different model
of staging in which there is one stage for parallel evaluation
and one for sequential evaluation.

The approach proposed by Feitelson et al. is based on an
online algorithm called CG. In this approach, it is assumed
that the cost of moving a task to the global task pool is an
integer constant, called g. The basic idea is to use amorti-
zation to reduce the scheduling total cost of moving tasks
to the global task pool. In particular, for each task that is
moved to the global task pool, CG ensures that there are
at least g + 1 tasks added to the local task pool. Narlikar
describes a similar approach based on an algorithm called
DFDeques [29]. Just as with work stealing, even though the
scheduler can avoid the communication costs in the common
case, the scheduler still has to pay a non-negligable cost for
each implicit thread.

Flattening and fusion. Flattening is a well-known pro-
gram transformation for nested parallel languages [10]. Im-
plementations of flattening include NESL [8] and Data Par-
allel Haskell [32]. Flattening transforms the program into a
form that maps well onto SIMD architectures. Flattened pro-
grams are typically much simpler to schedule at run time
than nested programs, because much of the schedule is pre-
determined by the flattening [38]. Controlling the granular-
ity of such programs is correspondingly much simpler than



in general. A limitation of existing flattening is that certain
classes of programs generated by the translation suffer from
space inefficiency [7], as a consequence of the transforma-
tion making changes to data structures defined in the pro-
gram. Our transformation involves no such changes.

The NESL [8] and Data Parallel Haskell [32] compilers
implement fusion transformation in order to increase granu-
larity. Fusion transforms the program to eliminate redundant
synchronization points and intermediate arrays. Although
fusion reduces scheduling costs by combining adjacent par-
allel loops, it is not relevant to controlling granularity within
loops. As such, fusion is orthogonal to our oracle based ap-
proach.

Cost Semantics. To give an accurate accounting of task-
creation of overheads in implicitly parallel languages we use
a cost semantics, where evaluation steps (derivation rules)
are decorated with work and depth information or “costs”.
This information can then be used to directly to bound run-
ning time on parallel computers by using standard schedul-
ing theorems that realize Brent’s bound. Many previous ap-
proaches also use the same technique to study work-depth
properties, some of which also make precise the relationship
between cost semantics and the standard directed-acyclic-
graph models [6, 7, 39]. The idea of instrumenting evalu-
ations to generate cost information goes back to the early
90s [35, 37].

Inferring Complexity Bounds. Our implementation of or-
acle scheduling requires the programmer to enter complex-
ity bounds for all parallel tasks. In some cases, these bounds
can be inferred by various static analyses, for example, using
type-based and other static analyses (e.g., [14, 25]), sym-
bolic techniques (e.g., [20, 21]). Our approach can benefit
from these approaches by reducing the programmer burden,
making it ultimately easier to use the proposed techniques in
practice.

8. Conclusion
In this paper, we propose a solution to the granularity-control
problem. We prove that an oracle that can approximate the
sizes of parallel tasks in constant time within a constant
factor of accuracy can be used to reduce the task creation
overheads to any desired constant fraction for a reasonably
broad class of computations. We describe how such an oracle
can be integrated with any scheduler to support what we call
oracle scheduling. We realize oracle scheduling in practice
by requiring the programmer to enter asymptotic complexity
annotations for parallel tasks and by judicious use of run-
time profiling. Consistently with our theoretical analysis,
our experiments show that oracle scheduling can reduce task
creation overheads to a small fraction of the sequential time
without hurting parallel scalability.
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