
Characteristic Formulae for the
Verification of Imperative Programs

Arthur Charguéraud
Max Planck Institute for Software Systems (MPI-SWS)

charguer@mpi-sws.org

Abstract
In previous work, we introduced an approach to program verifi-
cation based on characteristic formulae. The approach consists of
generating a higher-order logic formula from the source code of a
program. This characteristic formula is constructed in such a way
that it gives a sound and complete description of the semantics of
that program. The formula can thus be exploited in an interactive
proof assistant to formally verify that the program satisfies a par-
ticular specification.

This previous work was, however, only concerned with purely-
functional programs. In the present paper, we describe the gener-
alization of characteristic formulae to an imperative programming
language. In this setting, characteristic formulae involve specifica-
tions expressed in the style of Separation Logic. They also inte-
grate the frame rule, which enables local reasoning. We have im-
plemented a tool based on characteristic formulae. This tool, called
CFML, supports the verification of imperative Caml programs us-
ing the Coq proof assistant. Using CFML, we have formally ver-
ified nontrivial imperative algorithms, as well as CPS functions,
higher-order iterators, and programs involving higher-order stores.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Formal methods

General Terms Verification

1. Introduction
This paper addresses the problem of building formal proofs of cor-
rectness for higher-order imperative programs. It describes an ef-
fective technique for verifying that a program satisfies a specifica-
tion, and for proving termination of that program. This technique
supports the verification of arbitrarily-complex properties, thanks
to the use of an interactive proof assistant based on higher-order
logic. The work described in this paper is based on the notion of
characteristic formula of a program. A characteristic formula is a
higher-order logic formula that fully characterizes the semantics of
a program, and may thus be used to prove properties about the be-
havior of that program.

In previous work, we have shown how to build and exploit char-
acteristic formulae for purely-functional programs [9]. In this pa-
per, we extend those results to an imperative programming lan-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’11, September 19–21, 2011, Tokyo, Japan.
Copyright © 2011 ACM 978-1-4503-0865-6/11/09. . . $10.00

guage. Let JtK denote the characteristic formula of a imperative
term t. The application of the predicate JtK to a pre-conditionH and
to a post-condition Q yields the proposition JtKH Q. By construc-
tion of characteristic formulae, this proposition is true if and only if
the term t admits H as pre-condition and Q as post-condition. The
proposition JtKH Q may be established through interactive proofs,
using a combination of general-purpose tactics and tactics special-
ized for the manipulation of characteristic formulae.

Characteristic formulae are designed to be easily readable and
easily manipulable from inside an interactive proof assistant. A
characteristic formula has a size linear in that of the program it
describes. Moreover, a characteristic formula can be displayed in a
way that closely resembles the source code that it describes, thanks
to the use of an appropriate system of notation. With this notation
system, the proof obligation JtKH Q stating that “the term t admits
H as pre-condition and Q as post-condition” is displayed in a way
that reads as “tH Q”. This display feature makes it easy to relate
proof obligations to the piece of code they arose from.

The notion of characteristic formulae originates in process cal-
culi. In this context, two processes are behaviorally equivalent
if and only if their characteristic formulae are logically equiva-
lent [16]. An algorithm for building the characteristic formula of
any process was proposed in the 80’s [14]. More recently, Honda,
Berger and Yoshida adapted this idea from process logics to pro-
gram logics [18]. They gave an algorithm for building the pair of
the weakest pre-condition and of the strongest post-condition of
any PCF program. Note that their algorithm differs from weak-
est pre-condition calculus in that the PCF program considered is
not assumed to be annotated with any invariant. Honda et al sug-
gested that characteristic formulae could be used in program ver-
ification. However, they did not find a way to encode the ad-hoc
logic that they were using for stating specifications into a standard
logic. Since the construction of a theorem prover dedicated to this
logic would have required a tremendous effort, Honda et al’s work
remained theoretical and did not result in an effective program ver-
ification tool.

In prior work [9], we showed how to construct characteristic
formulae that are expressed in a standard higher-order logic. More-
over, we showed that characteristic formulae can be made of linear
size and that they can be pretty-printed like the source code they
describe. Those formulae are therefore suitable for manipulation
inside an existing proof assistant such as Coq [11]. We have im-
plemented a tool, called CFML (short for Characteristic Formulae
for ML) that parses a Caml program [24] and produces its charac-
teristic formula in the form of a Coq statement. Using CFML, we
were able to verify more than half of the content of Okasaki’s ref-
erence book Purely Functional Data Structures [37]. Since then,
we have generalized characteristic formulae to support reasoning
about mutable state, and have updated CFML accordingly. In the

present paper, we report on this generalization, making the follow-
ing contributions.

• We show that characteristic formulae for imperative programs
can still be pretty printed in a way that closely resambles the
source code they describe, in spite of the fact that their semantics
now involves a memory store that is implicitly threaded through-
out the execution of the program.

• In order to support local reasoning, we adapt characteristic for-
mulae to handle specifications stated in the style of Separation
Logic [39], and we introduce a predicate transformer for inte-
grating the frame rule into characteristic formulae.

• We accompany the definition of characteristic formulae not only
with a proof of soundness, but also with a proof of complete-
ness. Completeness ensures that any correct specification can be
established using characteristic formulae.

• We report on the verification of a nontrivial imperative algo-
rithm, Dijkstra’s shortest path algorithm. We also demonstrate
the ability of CFML to reason about interactions between first-
class functions and mutable state.

The content of this paper is organized in three main parts. Sec-
tion 2 describes the key ideas involved in the construction, the
pretty-printing and the manipulation of characteristic formulae for
imperative programs. Section 3 gives details on the formalization of
memory states, on the algorithm for generating characteristic for-
mulae and on the soundness and completeness theorems. Section 4
contains a presentation of several examples that were specified and
formalized using CFML. Due to space limitations, several aspects
of CFML could only be summarized. All the details can be found in
the author’s PhD dissertation [8], and all the Coq proofs mentioned
in this paper can be found online.1

2. Overview
2.1 Verification through characteristic formulae
The characteristic formula of a term t, written JtK, relates a de-
scription of the input heap in which the term t is executed with a
description of the output value and a description of the output heap
produced by the execution of t. Characteristic formulae are hence
closely related to Hoare triples [17], and, more precisely, to total
correctness Hoare triples, which also account for termination. A to-
tal correctness Hoare triple {H} t {Q} asserts that, when executed
in a heap satisfying the predicate H , the term t terminates and re-
turns a value v in a heap satisfyingQv. Note that the post-condition
Q is used to specify both the output heap and the output value.
When t has type τ , the pre-condition H has type Heap → Prop
and the post-condition Q has type 〈τ〉 → Heap → Prop, where
Heap is the type of a heap and where 〈τ〉 is the Coq type that cor-
responds to the ML type τ .

The characteristic formula JtK is a predicate such that JtKH Q
captures exactly the same proposition as the triple {H} t {Q}.
There is however a fundamental difference between Hoare triples
and characteristic formulae. A Hoare triple {H} t {Q} is a three-
place relation, whose second argument is a representation of the
syntax of the term t. On the contrary, JtKH Q is a logical proposi-
tion, expressed in terms of standard higher-order logic connectives,
such as ∧, ∃, ∀ and⇒. Importantly, this proposition does not refer
to the syntax of the term t. Whereas Hoare-triples need to be es-
tablished by application of derivation rules specific to Hoare logic,
characteristic formulae can be proved using only basic higher-order
logic reasoning, without involving external derivation rules.

1 http://arthur.chargueraud.org/research/2011/cfml/

We have used characteristic formulae for building CFML, a
tool that supports the verification of imperative Caml programs
using the Coq proof assistant. CFML takes as input source code
written in a large subset of Caml, and it produces as output a set
of Coq axioms that correspond to the characteristic formulae of
each top-level definition. It is worth noting that CFML generates
characteristic formulae without knowledge of the specification nor
of the invariants of the source code. The specification of each top-
level definition is instead provided by the user, in the form of the
statement of a Coq theorem. The user may prove such a theorem
by exploiting the axiom generated by CFML for that definition,
and he is to provide information such as loop invariants during the
interactive proof.

When reasoning about a program through its characteristic for-
mula, a proof obligation typically takes the form JtKH Q, asserting
that the piece of code t admits H as pre-condition and Q as post-
condition. The user can make progress in the proof by invoking the
custom tactics provided by CFML. Proof obligations thereby get
decomposed into simpler subgoals, following the structure of the
code. When reaching a leaf of the source code, some facts need
to be established in order to justify the correctness of the program.
Those facts, which no longer contain any reference to characteristic
formulae, can be proved using general-purpose Coq tactics, includ-
ing calls to decision procedures and to proof-search algorithms.

The rest of this section presents the key ideas involved in the
construction of characteristic formulae, covering the treatment of
let bindings, the frame rule and functions.

2.2 Characteristic formula of a let-binding
To evaluate a term of the form “letx = t1 in t2”, one first evaluates
the subterm t1 and then computes the result of the evaluation of
t2, in which x denotes the result produced by t1. To prove that
the expression “letx = t1 in t2” admits H as pre-condition and Q
as post-condition, one thus needs to find a valid post-condition Q′

for t1. This post-condition, when applied to the result x produced
by t1, describes the state of memory after the execution of t1
and before the execution of t2. So, Q′ x denotes the pre-condition
for t2. The corresponding Hoare-logic rule for reasoning on let-
bindings is:

{H} t1 {Q′} ∀x. {Q′ x} t2 {Q}
{H} (letx = t1 in t2) {Q}

LET

The characteristic formula for a let-binding is built as follows:

Jletx = t1 in t2K ≡
λH. λQ. ∃Q′. Jt1KH Q′ ∧ ∀x. Jt2K (Q′ x) Q

This formula closely resembles the corresponding Hoare-logic rule.
The only real difference is that, in the characteristic formula, the
intermediate post-condition Q′ is explicitly introduced with an ex-
istential quantifier, whereas this quantification is implicit in the
Hoare-logic derivation rule. The existential quantification of un-
known specifications, which is made possible by the strength of
higher-order logic, plays a central role here. This existential quan-
tification of specifications contrasts with traditional program ver-
ification approaches where intermediate specifications, including
loop invariants, have to be included in the source code.

Next, we introduce a notation system for pretty-printing char-
acteristic formulae. The aim is to make proof obligations easily
readable and closely related to the source code. For let-bindings,
the piece of notation defined is:

(let x = F1 in F2) ≡
λH. λQ. ∃Q′. F1H Q′ ∧ ∀x. F2 (Q′ x) Q

Hereafter, bold keywords correspond to notation for logical for-
mulae, whereas plain keywords correspond to constructors from the

programming language syntax. The definition of the characteristic
formula of a let-binding can now be reformulated as:

Jletx = t1 in t2K ≡ (let x = Jt1K in Jt2K)

The generation of characteristic formulae, which is a translation
from program syntax to higher-order logic, therefore boils down to
a re-interpretation of the programming language keywords.

Notation for characteristic formulae can be defined in a simi-
lar fashion for all the other constructions of the programming lan-
guage. It follows that characteristic formulae may be pretty-printed
exactly like the source code they describe. Hence, during the ver-
ification of a program, a proof-obligation appears to the user as a
piece of source code followed with its pre-condition and its post-
condition. Note that this convenient display applies not only to a
top-level program definition t but also to all of the subterms of t
involved during the verification of t.

CFML provides a set of tactics for making progress in the analy-
sis of a characteristic formula. For example, the tactic xlet applies
to a goal of the form “(let x = F1 in F2)H Q”. It introduces a
unification variable, call itQ′, and produces two subgoals. The first
one is F1H Q′. The second one is F2 (Q′ x)Q, under a context
extended with a fresh variable named x. The intermediate specifi-
cation Q′ introduced here typically gets instantiated through unifi-
cation when solving the first subgoal. The pre-condition for F2 is
thus known when starting to reason about the second subgoal. The
instantiation of Q′ may also be provided by the user explicitly, as
argument of the tactic xlet. More generally, CFML provides one
such “x-tactic” for each language construction. As a result, one can
verify a program using characteristic formulae even without any
knowledge about the construction of characteristic formulae.

2.3 Integration of the frame rule
Local reasoning [36] refers to the ability to verify a piece of code by
reasoning only about the memory cells that are involved in the exe-
cution of that code. With local reasoning, all the memory cells that
are not explicitly mentioned are implicitly assumed to remain un-
changed. The concept of local reasoning is very elegantly captured
by the “frame rule”, which originates in Separation Logic [39]. The
frame rule states that if a program expression transforms a heap de-
scribed by a predicate H1 into heap described by a predicate H ′

1,
then, for any heap predicate H2, the same program expression also
transforms a heap of the form H1 ∗ H2 into a state of the form
H ′

1 ∗H2. The star symbol, called separating conjunction, captures
a disjoint union of two pieces of heap. The frame rule can be for-
mulated in terms of Hoare triples as shown next.

{H1} t {Q1}
{H1 ∗H2} t {Q1 ? H2}

FRAME

Above, the symbol (?) is like (∗) except that it extends a post-
condition with a piece of heap. Technically, Q1 ? H2 is defined as
“λx. (Q1 x) ∗ H2”, where the variable x denotes the output value
and Q1 x describes the output heap.

To integrate the frame rule in characteristic formulae, we rely
on a predicate called local. This predicate is defined in such a way
that, to prove the proposition “local JtKH Q”, it suffices to find a
decomposition ofH of the formH1 ∗H2, a decomposition ofQ of
the formQ1?H2, and to prove JtKH1Q1. Intuitively, the predicate
local can be defined as follows.

localF ≡ λH. λQ. ∃H1. ∃H2.∃Q1.
H = H1 ∗H2 ∧ F H1Q1 ∧ Q = Q1 ? H2

The frame rule is not syntax-directed, meaning that one cannot
guess from the shape of the term t when the frame rule needs to
be applied. Yet, our goal is to generate characteristic formulae in
a systematic manner from the syntax of the source code. Since we

do not know where to insert applications of the predicate local,
we may simply insert applications of this predicate at every node
of characteristic formulae. For example, the previous definition for
let-bindings gets updated as follows.

(let x = F1 in F2) ≡
local (λH. λQ. ∃Q′. F1H Q′ ∧ ∀x. F2 (Q′ x) Q)

This aggressive strategy allows us to apply the frame rule at any
time during program verification. If there is no need to apply the
frame rule, then the local predicate may be simply ignored. Indeed,
given a formula F , the proposition “F H Q” is always a sufficient
condition for proving “localF H Q”. (It suffices to instantiate H2

as the specification of the empty heap.) We will later generalize
the approach described here for handling the frame rule so as
to also handle applications of the rule of consequence, which is
used to strengthen pre-conditions and weaken post-conditions, and
to enable the discarding of memory cells, for simulating garbage
collection.

2.4 Translation of types
Higher-order logic can naturally be used to state properties about
basic values such as purely-functional lists. Indeed, the list data
structure defined in Coq perfectly matches the list data structure
from Caml. However, particular care is required when specifying
and reasoning about program functions. Indeed, programming lan-
guage functions cannot be directly represented as logical functions,
because of a mismatch between the two: program functions may be
partial, whereas logical functions must always be total. To address
this issue, we introduce a new data type, called Func, used to rep-
resent functions. To the user of characteristic formulae, the type
Func is presented as an abstract data type. In the proof of sound-
ness, however, a value of type Func is interpreted as the syntax of
the source code of a function.

Another particularity of the reflection of program values into
Coq values is the treatment of pointers. When reasoning through
characteristic formulae, the type and the contents of memory cells
are described explicitly through heap predicates, so there is no need
for pointers to carry the type of the memory cell they point to. All
pointers are therefore described in the logic through an abstract data
type called Loc. In the proof of soundness, a value of type Loc is
interpreted as a store location.

The translation of Caml types into Coq types is formalized
through an operator, written 〈·〉, that maps all arrow types to the
type Func and maps all reference types to the type Loc. A Caml
value of type τ is thus represented as a Coq value of type 〈τ〉. For
simplicity, program integers are idealized and are simply mapped
to Coq values of type Z. However, it would also be possible to map
the type int to the Coq type int64 for reasoning about overflows.
The definition of the operator 〈·〉 can be summarized as follows.

〈int〉 ≡ Z
〈τ1 × τ2〉 ≡ 〈τ1〉 × 〈τ2〉
〈τ1 + τ2〉 ≡ 〈τ1〉+ 〈τ2〉
〈τ1 → τ2〉 ≡ Func

〈ref τ〉 ≡ Loc

The translation from Caml types to Coq types is in fact con-
ducted in two steps. A well-typed ML program gets first translated
into a well-typed weak-ML program, and this weak-ML program is
then fed to the characteristic formula generator. Weak-ML corre-
sponds to a relaxed version of ML that does not keep track of the
type of pointers nor of the type of functions. Moreover, weak-ML
does not impose any constraint on the typing of applications nor on
the typing of dereferencing.

Since weak-ML imposes strictly fewer constraints than ML, any
program well-typed in ML is also well-typed in weak-ML. Weak-
ML nevertheless enforces strong enough invariants to justify the
soundness of characteristic formulae. So, although memory safety
is not obtained by weak-ML, it is guaranteed by the proofs of
correctness established using a characteristic formula generated
from a well-typed weak-ML program.

Although it is possible to generate characteristic formulae di-
rectly from ML programs, the use of weak-ML as an intermedi-
ate type system serves three important purposes. First, weak-ML
helps simplifying the definition of the characteristic formula gen-
eration algorithm. Second, it enables the verification of programs
that are well-typed in weak-ML but not in ML, such as programs
exploiting System F functions, null pointers, or strong updates (i.e.,
type-varying updates of a reference cell). Third, weak-ML plays a
crucial role in proving the soundness and completeness of charac-
teristic formulae. This latter aspect of weak-ML is not discussed in
this paper, however it is described in author’s PhD dissertation [8].

2.5 Reasoning about functions
To specify the behavior of functions, we rely on a predicate, called
App, which also appears to the user as an abstract predicate. Intu-
itively, the proposition “App f v H Q” asserts that the application
of the function f to v in a heap satisfying H terminates and re-
turns a value v′ in a heap satisfying Qv′. The predicates H and Q
correspond to the pre- and post-conditions of the application of the
function f to the argument v. It follows that the characteristic for-
mula for an application of a function f to a value v is simply built
as the partial application of App to f and v.

Jf vK ≡ App f v

The function f is viewed in the logic as a value of type Func.
If f takes as argument a value v described in Coq at type A and
returns a value described in Coq at type B, then the pre-condition
H has type Hprop, a shorthand for Heap → Prop, and the post-
condition Q has type B → Hprop. So, the predicate App has type:

∀AB. Func→ A→ Hprop→ (B → Hprop)→ Prop

For example, the specification of the function incr, which incre-
ments the content of a memory cell containing an integer, takes the
form of a theorem stated in terms of the predicate App:

∀r. ∀n. App incr r (r ↪→ n) (λ_. r ↪→ n+ 1)

Above, the heap predicate (r ↪→ n) describes the memory state
expected by the function: it consists of a single memory cell located
at address r and whose content is the value n. Similarly, the heap
predicate (r ↪→ n+ 1) describes the memory state posterior to the
function execution. The abstraction “λ_.” is used to discard the unit
value returned by the function incr.

By construction, a statement of the form “App f v H Q” de-
scribes the behavior of an application. As we have just seen, App
can be used to write specifications. It remains to explain where
assumptions of the form “App f v H Q” can be obtained from.
Such assumptions are provided by characteristic formulae associ-
ated with function definitions. If a function f is defined as the ab-
straction “λx. t”, then, given a particular argument v, one can de-
rive an instance of “App f v H Q” simply by proving that the body
t, in which x is instantiated with v, admits the pre-conditionH and
the post-condition Q.

In what follows, we explain how to build characteristic formula
for local functions and then for top-level function. For a local
function definition, the characteristic formula is as follows:

Jlet rec f = λx. t in t′K ≡ λH. λQ. ∀f. H ⇒ Jt′KH Q

whereH ≡ (∀xH ′Q′. JtKH ′Q′ ⇒ App f xH ′Q′)

For a top-level function definition of the form “let rec f = λx. t”,
CFML generates two Coq axioms. The first one has name f and
type Func. This Coq variable f corresponds to the Caml function f .
The second axiom describes the semantics of f , through the follow-
ing statement: “∀xH Q. JtKH Q ⇒ App f xH Q”. Note that the
soundness theorem proved for characteristic formulae ensures that
adding this axiom does not introduce any logical inconsistency.

For example, consider the top-level function definition “let f =
λr. (incr r ; incr r)”, which expects a reference and increments its
content twice. This function may be specified through a theorem
whose statement is “∀rn. App f r (r ↪→ n) (λ_. r ↪→ n+ 2)”. To
establish this theorem, the first step consists in applying the second
axiom generated for the function f . The resulting proof obligation
is “(app incr r ; app incr r) (r ↪→ n) (λ_. r ↪→ n+ 2)”, where
“app” and “;” correspond to the pieces of notation defined for the
characteristic formulae of applications and of sequences, respec-
tively. This proof obligation can be discharged with help of the tac-
tic xseq, for reasoning about the sequence, and of the tactic xapp,
for reasoning about the two applications. In fact, for such a simple
function, one may establish correctness through a simple invoca-
tion of a tactic called xgo, which repeatedly applies the appropriate
x-tactic until some information is required from the user.

Two observations are worth making about the treatment of func-
tions. First, characteristic formulae do not involve any specific
treatment of recursivity. Indeed, to prove that a recursive function
satisfies a given specification, it suffices to conduct a proof that the
function satisfies that specification by induction. The induction may
be conducted on a measure or on a well-founded relation, using the
induction facility from the interactive theorem prover being used.
So, characteristic formulae for recursive functions do not need to
include any induction hypothesis. A similar observation was also
made by Honda et al in their work on program logics [18].

The second observation concerns first-class functions. As ex-
plained through this section, a function f is specified with a state-
ment of the form “App f v H Q”. Because this statement is a
proposition like any other (it has type Prop), it may appear in-
side the pre-condition or the post-condition of any another function
(thanks to the impredicativity of Prop). This statement may also ap-
pear in the specification of the content of a memory cell. The predi-
cate App therefore supports reasoning about higher-order functions
(functions taking functions as arguments) and higher-order stores
(memory stores containing functions).

3. Characteristic formula generation
This section of the paper explains in more details how characteristic
formulae are constructed. It presents weak-ML types, the source
language, the translation of Caml values into Coq values, and the
predicates used to describe heaps. It then describes the algorithm
used to generated characteristic formulae. Note that it is safe to
read Section 4, which is concerned with examples, before this one.

3.1 From ML types to Weak-ML types and Coq types
In what follows, we describe the grammar of ML types and weak-
ML types, and then formalize the translation from ML types to
weak-ML types, and the translation from weak-ML types to Coq
types. Hereafter, A denotes a type variable, C denotes the type
constructor for an algebraic data type, τ denotes an ML type, and
σ denotes a ML type scheme. Furthermore, the overbar notation
denotes a list of items. The grammar of ML types is:

τ := A | int | C τ | τ → τ | ref τ | µA.τ

σ := ∀A.τ

Note that sum types, product types, the boolean type and the unit
type can be defined as algebraic data types.

〈A〉 ≡ A

〈int〉 ≡ int

〈C τ〉 ≡ C 〈τ〉
〈τ1 → τ2〉 ≡ func

〈ref τ〉 ≡ loc

〈∀A. τ〉 ≡ ∀B. 〈τ〉 where B = A ∩ fv(〈τ〉)

〈µA.τ〉 ≡
�
�
�
�

〈τ〉 if A 6∈ 〈τ〉
program rejected otherwise

Figure 1. Translation from ML types to weak-ML types

Weak-ML types are obtained from ML types by mapping all ar-
row types to a constant type called func and mapping all reference
types to the constant type called loc. Let T denote a weak-ML type
and S denote a weak-ML type scheme. The grammar of weak-ML
types is as follows:

T := A | int | C T | func | loc

S := ∀A.T
The translation of an ML type τ into the corresponding weak-

ML type, written 〈τ〉, appears in Figure 1. The treatment of poly-
morphism and of recursive types is explained next. When translat-
ing a type scheme, the list of quantified variables might shrink. For
example, the ML type scheme “∀AB. A+ (B → B)” is mapped
to “∀A. A+ func”, which no longer involves the type variable B.
Weak-ML includes algebraic data types, but does not support gen-
eral equi-recursive types. Nevertheless, some recursive ML types
can be translated into weak-ML, because the recursion involved
might vanish when erasing arrow types. For example, the recursive
ML type “µA.(A × int)” does not have any counterpart in weak-
ML, however the recursive ML type “µA.(A→ B)” gets mapped
to the weak-ML type func. The verification approach described in
the present paper therefore supports reasoning about functions with
an equi-recursive type.

When building the characteristic formula of a weak-ML pro-
gram, weak-ML types get translated into Coq types. This trans-
lation is almost the identity, because every type constructor from
weak-ML is directly mapped to the corresponding Coq type con-
structor. Algebraic type definitions are translated into correspond-
ing Coq inductive definitions. Note that the positivity requirement
associated with Coq inductive types is not a problem here: since
there is no arrow type in weak-ML, the translation from weak-ML
types to Coq types never produces a negative occurrence of an in-
ductive type in its own definition. In summary, the Coq translation
of a weak-ML type T , written VTW, is defined as follows.

VintW ≡ Z
VlocW ≡ Loc

VfuncW ≡ Func

VAW ≡ A

VC TW ≡ C VTW
V∀A.TW ≡ ∀A. VTW

3.2 Typed source language
Before generating characteristic formulae, programs first need to
be put in an administrative normal form. Through this process,
programs are arranged so that all intermediate results and all func-
tions become bound by a let-definition. One notable exception is
the application of simple total functions such as addition and sub-
traction. For example, the application “f (v1 + v2)” is consid-
ered to be in normal form although “f (g v1 v2)” is not in normal
form in general. The normalization process, which is similar to A-
normalization [13], preserves the semantics and greatly simplifies
formally reasoning about programs. Moreover, it is straightforward

to implement. Similar transformations have appeared in previous
work on program verification (e.g., [18, 38]). In this paper, we omit
a formal description of the normalization process and only show
the grammar of terms in normal form.

The characteristic formula generator expects a program in ad-
ministrative normal form. It moreover expects this program to be
typed, in the sense that all its subterms should be annotated with
their weak-ML type. To formally define characteristic formulae, we
therefore need to introduce the syntax of typed programs in normal
forms. This syntax is formalized as follows, where t̂ ranges over
typed term and v̂ ranges over typed values.

v̂ := n | xT | DT (v̂, . . . , v̂) |
ref | get | set | cmp | null

t̂ := v̂ | (v̂ v̂) | crash | if v̂ then t̂ else t̂ |
letx = t̂ in t̂ | letx = ΛA. v̂ in t̂ | t̂ ; t̂ |
let rec f = ΛA.λx.t̂ in t̂

Note that locations and function closures do not exist in source
programs, so they are not included in the above grammar. The
letter n denotes an integer a memory location. The functions ref,
get and set are used to allocate, read and write reference cells,
respectively, and the function cmp enables comparison of two
memory locations. The null pointer, written null, is a particular
location that never gets allocated. Typed programs carry explicit
information about generalized type variables, so a polymorphic
function definition takes the form “let rec f = ΛA.λx.t̂1 in t̂2” and
a polymorphic let-binding takes the form “letx = ΛA. v̂ in t̂”. Due
to the value restriction, the general form “letx = ΛA. t̂1 in t̂2” is
not allowed. The syntax of typed programs also keeps track of type
applications, which take place either on a polymorphic variable x,
written xT , or on a polymorphic data constructor D, written DT .
For-loops and while-loops are discussed later on (§3.7).

3.3 Reflection of values in the logic
Constructing characteristic formulae requires a translation of all
the Caml values that appear in the program source code into the
corresponding Coq values. This translation, called decoding, and
written dv̂e, transforms a weak-ML value v̂ of type T into the
corresponding Coq value, which has type VTW. The definition of
dv̂e is shown below. Values on the left-hand side are well-typed
weak-ML values whereas values on the right-hand side are (well-
typed) Coq values.

dne ≡ n

dxT e ≡ x VTW
dDT (v̂1, . . . , v̂2)e ≡ D VTW (dv̂1e, . . . , dv̂2e)
dΛA. v̂e ≡ λA. dv̂e

Above, a program integer n is mapped to the corresponding Coq
integer. If x is a non-polymorphic variable, then it is simply mapped
to itself. However, if x is a polymorphic variable applied to some
types T , then this occurrence is translated as the application of x
to the translations of each of the types from the list T . A program
data constructor D is mapped to the corresponding Coq inductive
constructor, and if the constructor is polymorphic then its type
arguments get translated into Coq types. The primitive functions
for manipulating references (e.g., get) are mapped to corresponding
abstract Coq values of type Func.

The decoding of a polymorphic value ΛA. v̂ is a Coq func-
tion that expects some types A and returns the decoding of the
value v̂. For example, the polymorphic pair (nil, nil) has type
“∀A.∀B. listA × listB”. The Coq translation of this value is
“fun A B : Type => (@nil A, @nil B)”, where the prefix @
indicates that type arguments are given explicitly. The Coq expert

might feel sceptical about the fact that the type variables A and B
get assigned the kind Type. Since a weak-ML type variable is to be
instantiated with a weak-ML type T , a Coq type variable occuring
in a characteristic formula should presumably be instantiated only
with a Coq type of the form VTW. Nevertheless, we have proved
that it is not needed to consider the kind defined as the image of the
operator V·W, because it remains sound to assign the kind Type to
the type variables quantified in characteristic formulae. The proof
can be found in [8], Section 6.4.

3.4 Heap predicates
This section explains how heaps are represented, how operations
on heaps are defined, and how heap predicates are built in the style
of Separation Logic. Note that all the operations and predicates on
heaps are completely formalized in Coq.

The semantics of a source program involves a memory store,
which is a finite map from locations to program values. The Coq
object that corresponds to a memory store is called a heap. The type
Heap is defined in Coq as the type of finite maps from locations to
dependent pairs, where a dependent pair is a pair of a Coq type T
and of a Coq value V of type T . With this definition, the set of Coq
values of type Heap is isomorphic to the set of well-typed memory
stores.

Operations on heaps are defined in terms of operations on maps.
The empty heap, written ∅, is a heap built on the empty map.
Similarly, a singleton heap, written l →T V , is a heap built on
a singleton map binding a location l to a dependent pair made
of a type T and a value V of type T . Two heaps are said to be
disjoint, written h1 ⊥ h2, when their underlying maps have disjoint
domains. The union of two heaps, written h1 + h2, returns the
union of the two underlying finite maps. We are only concerned
with disjoint unions here, so it does not matter how the map union
operator is defined for maps with overlapping domains.

Using those basic operations on heaps, one can define predicates
for specifying heaps in the style of Separation Logic, as is done for
example in Ynot [10]. Heap predicates are simply predicates over
values of type Heap, so they have the type Heap → Prop, abbre-
viated as Hprop. A singleton heap that binds a non-null location l
to a value V of type T is characterized by the predicate l ↪→T V ,
which is defined as λh. l 6= null ∧ h = (l →T V). The heap
predicateH1 ∗H2 holds of a disjoint union of a heap satisfyingH1

and of a heap satisfying H2. It is defined as λh. ∃h1 h2. h1 ⊥
h2 ∧ h = h1 + h2 ∧ H1 h1 ∧ H2 h2.

In order to describe local invariants of data structures, propo-
sitions are lifted as heap predicates. More precisely, the predicate
[P] holds of an empty heap if the proposition P is true. So, [P] is
defined as λh. P ∧ h = ∅. In particular, the empty heap is char-
acterized by the predicate [], which is short for [True]. Similarly,
existential quantifiers are lifted: ∃∃x.H holds of a heap h if there
exists a value x such that H holds of that heap2.

The present work ignores the disjunction construct (H1 ∨H2).
To reason on the content of the heap by case analysis, we instead
rely on heap predicates of the form “ifP thenH1 elseH2”, which
are defined using the builtin conditional construct from classical
logic. The present work also does not make use of non-separating
conjunction (H1 ∧ H2). It therefore does not include the rule of
conjunction, which can be found in a number of formalizations of
Separation Logic. From a pratical perspective, we never felt the
need for the conjunction rule. From a theoretical perspective, the
conjunction rule is not needed for characteristic formulae to achieve

2 The formal definition for existentials properly handles binders. It actually
takes the form hexists J , where J is a predicate. Formally:
hexists (A : Type) (J : A→ Hprop) ≡ λ(h : Heap). ∃(x : A). J x h.

completeness. (It is not yet known whether characteristic formulae
would be able to accomodate the conjunction rule or not.)

Reasoning about heaps is generally conducted in terms of an
entailment relation, written H1 B H2, which asserts that any heap
satisfying H1 also satisfies H2. It is defined as ∀h.H1 h ⇒ H2 h.
Similarly, an entailment relation is provided for post-conditions. It
is writtenQ1 I Q2 and defined as ∀x. Q1 x B Q2 x. A number of
lemmas (not shown) allow reasoning about heap entailment without
having to unfold the definition of this relation. Moreover, several
tactics are provided to automate the application of these lemmas.
As a result, apart from the setting up of the core definition and
lemmas in the CFML library, the proofs never refer to objects
of type Heap directly: program verification is carried out solely
in terms of heap predicates of type Hprop (like done, e.g., in
Ynot [10]).

Observe that the Separation Logic used here is not intuitionistic.
In general, the entailment H1 ∗ H2 B H1 is false. (It only holds
when H2 describes an empty heap.) With an intuitionistic Separa-
tion Logic, one may discard pieces of heap at any time during the
reasoning on heap entailment. Here, garbage collection is instead
modelled by having an explicit garbage heap mentioned in the def-
inition of the predicate local, as described next.

3.5 Local predicates
In the introduction, we suggested how to define the predicate trans-
former “local” to account for applications of the frame rule. We
now present the general definition of this predicate, a definition
that also accounts for the rule of consequence and for the rule of
garbage collection. Moreover, it supports the extraction of propo-
sitions and existentially-quantified variables from pre-conditions.
We also introduce a predicate, called “islocal”, that is useful for
manipulating formulae of the form “localF”.

The predicate local applies to a formula F with a type of the
form Hprop → (A → Hprop) → Prop, for some type A. Its
definition is:

localF ≡ λH Q. ∀h. H h ⇒ ∃H1H2H3Q1.
(H1 ∗H2)h ∧ F H1Q1 ∧ Q1 ? H2 I Q ? H3

where H describes the initial heap, H1 corresponds to the part of
the heap with which the formulaF is concerned,H2 corresponds to
the part of the heap that is being framed out, H3 corresponds to the
part of the heap that gets discarded, Q describes the final result and
final heap, and Q1 is such that Q is equivalent to Q1 ? H2. (Recall
that the latter is defined as λx. Q1 x∗H2.) Note that the definition
of the predicate local shows some similarities with the definition
of the “STsep” monad from Hoare Type Theory [32], in the sense
that both aim at baking the Separation Logic frame condition into
a system originally defined in terms of heaps describing the whole
memory.

One can prove that the predicate local may be safely discarded
during reasoning, in the sense that “F H Q” is a sufficient con-
dition for proving “localF H Q”. Another useful property of the
predicate local is its idempotence: for any predicate F , the pred-
icate “localF” is equivalent to the predicate “local (localF)”.
Other properties of local can be expressed in terms of a predicate
called islocal, defined as:

islocalF ≡ (F = localF)

This definition asserts that the predicate F is extensionally equiv-
alent to “localF”. In such a case, the formula F is called a local
formula. Note that “islocal (localF)” is true for any F .

Now, assuming that F is a local formula, all the reasoning rules
shown in Figure 2 can be exploited. The interest of introducing the
predicates islocal is that it conveniently allows us to apply any of
the reasoning rules from Figure 2, an arbitrary number of times,

FRAME : F H Q ⇒ F (H ∗H ′) (Q ? H ′)

GC-PRE : F H Q ⇒ F (H ∗H ′)Q

GC-POST : F H (Q ? H ′) ⇒ F H Q

CONSEQUENCE-PRE : F H Q ∧ H ′ B H ⇒ F H ′Q

CONSEQUENCE-POST : F H Q ∧ Q I Q′ ⇒ F H Q′

EXTRACT-PROP : (P ⇒ F H Q) ⇒ F ([P] ∗H)Q

EXTRACT-EXISTS : (∀x. F H Q) ⇒ F (∃∃x.H)Q

Figure 2. Reasoning rules applicable to a local formula F

Jv̂K ≡
local (λHQ. H B Q dv̂e)

Jv̂1 v̂2K ≡
local (λHQ. App dv̂1e dv̂2eH Q)

Jletx = t̂1 in t̂2K ≡
local (λHQ. ∃Q′. Jt̂1KH Q′ ∧ ∀x. Jt̂2K (Q′ x)Q)

Jt̂1 ; t̂2K ≡
local (λHQ. ∃Q′. Jt̂1KH Q′ ∧ Jt̂2K (Q′ tt)Q)

Jlet rec f = ΛA.λx.t̂1 in t̂2K ≡
local (λHQ. ∀f. H ⇒ Jt̂2KH Q)

with H ≡ ∀AxH ′Q′. Jt̂1KH ′Q′ ⇒ App f xH ′Q′

Jif v̂ then t̂1 else t̂2K ≡
local (λHQ. (dv̂e = true ⇒ Jt̂1KH Q)

∧ (dv̂e = false ⇒ Jt̂2KH Q))

JcrashK ≡
local (λHQ. False)

Jletx = ΛA. v̂ in t̂K ≡
local (λHQ. ∀x. x = λA.dv̂e ⇒ Jt̂KH Q)

Figure 3. Generation of characteristic formulae

and in any order. Moreover, the predicate islocal plays a key role in
the characteristic formulae of for-loops and while-loops (see §3.7).

3.6 Characteristic formula construction
We are now ready to describe the algorithm for constructing char-
acteristic formulae. The characteristic formula of a typed term t̂ is
written Jt̂K. If t̂ admits the weak-ML type T , then the formula Jt̂K
has type Hprop → (VTW → Hprop) → Prop. Recall that Hprop
is an abbreviation for Heap → Prop. The rules for constructing
characteristic formulae appear in Figure 3. Before describing each
rule individually, two observations are worth making about the fig-
ure. First, every definition starts with an application of the predicate
local. The presence of this predicate at every node of a character-
istic formula enables us to apply any of the reasoning rules from
Figure 2 at any point during the verification of a program. Second,
all the program values get translated into Coq values. This is done
through applications of the decoding operator, written dv̂e.

The first rule from Figure 3 states that a value v admits a pre-
condition H and a post-condition Q if the current heap, which is
described by H , also satisfies the predicate Q dv̂e. The character-
istic formula of an application is obtained directly by applying the
special predicate App. The treatment of let-bindings has already
been explained in the introduction. The case of a sequence is a spe-
cialized version of that of let-bindings, where the result of the first
term is always the unit value (written tt).

The treatment of functions has also already been explained,
except for the treatment of polymorphism. A polymorphic function

is written “let rec f = ΛA.λx.t̂1”, whereA denotes the list of type
variables involved in the type-checking of the body of the function.
The type variables from the list A are quantified in the hypothesis
H provided by the characteristic formula for reasoning about the
body of the function. Here again, the type variables are given the
kind Type in Coq. Note that, in weak-ML, a polymorphic function
admits the type func, just like any other function. So, the variable
f admits in Coq the type Func.

To show that a conditional of the form “if v then t1 else t2”
admits a given specification, one needs to prove that t1 admits
that specification when v is true and that t2 admits that same
specification when v is false. The definition of the characteristic
formula of the instruction crash, which corresponds to a dead
branch in the code, requires the programmer to prove that this point
in the code can never be reached. This is equivalent to showing
that the set of assumptions accumulated before reaching this point
contains a logical inconsistency, i.e., that False is derivable.

The last definition from Figure 3 is slightly more technical. A
polymorphic let-binding takes the form “letx = ΛA. v̂ in t̂”, where
v̂ is a polymorphic value with free type variables A. If v̂ has type
T , then the program variable x has type ∀A.T . The characteristic
formula associated with this let-binding quantifies over a Coq vari-
able x of type ∀A.VTW, and it provides the assumption that x is the
Coq value that corresponds to the program value v̂. This assump-
tion is stated through an extensional equality, written x = λA.dv̂e.
This equality implies that, for any list of weak-ML types U , the
application “xVUW” yields the Coq value that corresponds to the
program value [A→ U] v̂.

This completes the description of Figure 3. The characteristic
formulae of loops are explained in the next section. The treat-
ment of n-ary functions, mutually-recursive functions, assertions
and pattern matching could not be described in this paper due to
space limitations. This material can be found in the author’s disser-
tation [8].

For each construction of the programming language, a custom
Coq notation is defined for pretty-printing it in a way that resembles
the source code. We have already seen how to pretty-print formulae
for let-bindings. Additional examples concerning values, applica-
tions and function definitions are shown below.

(ret V) ≡ local (λHQ. H B QV)

(app V1 V2) ≡ local (λHQ. AppV1V2HQ)

(let recf = (funAx := F1) in F2) ≡ local (λHQ.
∀f. (∀AxH ′Q′. F1H

′Q′ ⇒ App f xH ′Q′) ⇒ F2H Q)

Finally, consider the specification of the functions for manipu-
lating references:

∀Av. App ref v [] (λr. r ↪→A v)
∀Ar v. App get r (r ↪→A v) (λx. [x = v] ∗ r ↪→A v)
∀AA′ r v v′. App set (r, v) (r ↪→A′ v′) (λ_. r ↪→A v)
∀r r′. App cmp (r, r′) [] (λx. [x = true⇔ r = r′])

Above, the functions being specified have type Func, v has type
A, v′ has type A′, and r and r′ have type Loc. Observe that the
specification of set allows for strong updates, that is, for changes
in the type of the content of a reference cell.

3.7 Characteristic formulae for loops
Since the source language already contains recursive functions,
there is, from a theoretical perspective, no need do discuss the
treatment of loops. That said, loops admit direct characteristic
formulae whose use greatly shortens verification proof scripts in
practice. To understand the characteristic formula of a while loop,
it is useful to first study an example.

Consider the term “while (get r > 0) do (decr r ; incr s)”, and
call this term t. Let us prove that, for any non-negative integer n and
any integerm, the term t admits the pre-condition “(r ↪→ n)∗(s ↪→
m)” and the post-condition “(r ↪→ 0) ∗ (s ↪→ m + n)”. We can
prove this statement by induction on n. According to the semantics
of a while loop, the term t admits the same semantics as the term
“if (get r > 0) then (decr r ; incr s ; t) else tt”. If the content of r
is zero, then n is equal to zero, and it is straightforward to check
that the pre-condition matches the post-condition. Otherwise, the
decrement and increment functions are called, and the state after
their execution is described as “(r ↪→ n − 1) ∗ (s ↪→ m + 1)”.
At this point, we need to reason about the nested occurrence of t,
that is, about the subsequent iterations of the loop. To that end,
we invoke the induction hypothesis and derive the post-condition
“(r ↪→ 0) ∗ (s ↪→ (m + 1) + (n − 1))”, which matches the
required post-condition.

This example illustrates how the reasoning about a while loop is
equivalent to the reasoning about a conditional whose first branch
ends with a call to the same while loop. The characteristic formula
of “while t1 do t2” builds upon this idea. It involves a quantifica-
tion over an abstract variableR, which denotes the semantics of the
while loop, in the sense that RH ′Q′ holds if and only if the loop
admits H ′ as pre-condition and Q′ as post-condition. The main as-
sumption provided about R states that, to establish the proposition
RH ′Q′ for a particularH ′ andQ′, it suffices to prove that the term
“if t1 then (t2 ; while t1 do t2) else tt” admits H ′ as pre-condition
and Q′ as post-condition. This latter statement is expressed with
the help of the notation introduced for pretty-printing characteristic
formulae. The characteristic formula for while loops is therefore as
follows. (The role of the hypothesis “islocalR” is explained after-
wards.)

Jwhile t̂1 do t̂2K ≡
local (λHQ. ∀R. islocalR ∧ H ⇒ RH Q)

with H ≡ ∀H ′Q′.
(if Jt̂1K then (Jt̂2K ;R) else ret tt)H ′Q′ ⇒ RH ′Q′

With the characteristic formula shown above, the verification of a
while-loop can be conducted by induction on any well-founded re-
lation. CFML also provides tactics to address the typical case where
the proof is conducted using a loop invariant and a termination mea-
sure.

To reflect the fact that the predicate R supports application of
the frame rule as if it were a characteristic formula, the definition
shown above provides the assumption that R is a local formula.
For example, this assumption would be useful for reasoning about
the traversal of an imperative list using a while-loop. At every
iteration of this loop, one cell is traversed. This cell may be framed
out from the reasoning about the subsequent iterations, thanks to
the assumption “islocalR”. Such an application of the frame rule
makes it possible to verify the list trasversal using only the simple
list representation predicate, avoiding the need to involve the list-
segment representation predicate. A similar observation about the
usefulness of applying the frame rule during the execution of a loop
was also recently made by Tuerk [41].

The characteristic formula of a for-loop is somewhat similar to
that of a while-loop. The main difference is that the predicate R
is replaced with a predicate S which takes as extra argument the
current value of the loop counter, here named i. The definition is:

Jfor i = v̂1 to v̂2 do t̂K ≡
local (λHQ.∀S. (∀i. islocal (S i)) ∧H ⇒ S dv̂1eH Q)

with H ≡ ∀iH ′Q′.
(if i ≤ dv̂2e then (Jt̂K ;S (i+ 1)) else ret tt)H ′Q′ ⇒ S iH ′Q′

3.8 Soundness and completeness
Characteristic formulae are both sound and complete. The sound-
ness theorem states that if the characteristic formula of a pro-
gram holds of some specification, then this program indeed satisfies
that specification. More precisely, if the characteristic formula of a
term t holds of a pre-condition H and a post-condition Q, then the
execution of t, starting from a state h satisfying the pre-condition
H , terminates and produces a value v in a final state h′ such that
the post-condition Q holds of v and h′. The semantics judgment
involved here is written t̂/h ⇓ v̂/h′ . The formal statement shown
below also takes into account the fact the final heap may contain
some garbage values, which are gathered in a sub-heap called h′′.

Theorem 3.1 (Soundness) Let t̂ be a well-typed, closed weak-ML
term. LetH andQ be a pre- and a post-condition, and h be a heap.

J t̂ K H Q ∧ H h ⇒ ∃v̂ h′ h′′. t̂/h ⇓ v̂/(h′+h′′) ∧ Q dv̂e h′

Above, H has type “Heap → Prop” and Q has type “VTW →
Heap→ Prop”, where T is the type of t̂.

The completeness theorem asserts that, reciprocally, if a pro-
gram admits a given specification, then it is possible to prove that
the characteristic formula of this program holds of that specifica-
tion. This completeness statement is, of course, relative to the ex-
pressiveness power of the logic of Coq. More precisely, the state-
ment of completeness states the following: if one is able to estab-
lish, with respect to a deep embedding of the source language in
Coq, that a given program terminates and produces a value satis-
fying a given post-condition, then it is possible to establish in Coq
that the characteristic formula of this program holds of the given
post-condition.

Due to space limitations, the present paper does not include the
general statement of the completeness theorem, which involves the
notion of most-general specification and that of typed reduction, but
only a specialized version for the case of an ML program producing
an integer result. This simplified statement reads as follows: if t
is a closed ML program whose execution produces an integer n,
then the characteristic formula of t holds of a pre-condition that
characterizes the empty heap and of a post-condition asserting that
the output value is exactly equal to n.

Theorem 3.2 (Completeness —particular case) Let t be a closed
ML term, and let t̂ denote the corresponding weak-ML term. Let n
be an integer and let h be a memory state. Then,

t/∅ ⇓ n/h ⇒ J t̂ K [] (λx. [x = n])

The completeness theorem is relative to the expressive power of
Coq because the hypothesis t/∅ ⇓ n/h is interpreted as the state-
ment of a fact provable in Coq. More precisely, this hypothesis
asserts the existence of a Coq proof term witnessing the fact that
the configuration t/∅ is related to the configuration n/h by the
inductively-defined evaluation judgment (⇓).

The proofs of the soundness and completeness theorems are
quite involved. They amounts to about 30 pages of the author’s PhD
dissertation [8]. In addition to those paper-and-pencil proofs, we
considered a simple imperative programming language (including
while loops but no functions) and mechanized the theory of charac-
teristic formulae for this language. More precisely, we formalized
the syntax and semantics of this language, defined a characteristic
formula generator for it, and then proved in Coq that the formulae
produced by this generator are both sound and complete.

4. Examples
This section describes four examples. The first one is Dijsktra’s
shortest path algorithm. It illustrates how CFML supports the rea-
soning about modular code involving complex invariants. The other

examples focus on the treatment of imperative first-class functions,
covering a counter function with an abstract local state, Reynold’s
CPS-append function, and an iterator on imperative lists.

Conducting proofs using CFML involves two additional ingre-
dients that have not yet been described. The first one is the predicate
Appn, which generalizes the predicate App to n-ary applications.
For example, “App2 f x y H Q” asserts that the application of f to
x and y admitsH andQ as pre- and post-conditions. The predicate
App1 is the same as App, and the predicates Appn can be defined
in terms of App1.

The second key ingredient is the notion of a representation pred-
icate. A heap predicate of the form v T V is used to relate the
mutable data structure found at location v with the mathematical
value V that it represents. Here, T is a representation predicate: it
characterizes the relationship between v, V and the piece of mem-
ory state spanned by the data structure under consideration. In fact,
v T V is simply defined as T V v, where T can be any pred-
icate of type A → B → Hprop. This section contains examples
showing how to use and how to define representation predicates.

4.1 Dijkstra’s shortest path
In this first example, describe the specification and verification of a
particular implementation of Dijkstra’s algorithm. This implemen-
tation uses a priority queue that does not support the decrease-key
operation. Using such a queue makes the proofs slightly more in-
volved, because the invariants need to account for the fact that the
queue may contain superseded values. The algorithm involves three
mutable data structures: v, an array of boolean used to mark the
nodes for which the best distance is already known; b, an array
of distances used to store the best know distance for every node
(distances may be infinite); and q, a priority queue for efficiently
identifying the next nodes to be visited.

The Caml source code is 20 lines long, and it is organized
around a main while-loop. Inside the loop, the higher-order func-
tion List.iter is used for traversing an adjacency list. The imple-
mentation of the priority queue is left abstract: the source code is
implemented as a Caml functor, whose argument corresponds to a
priority queue module. Similarly, the verification script is imple-
mented as a Coq functor. This functor expects two arguments: a
module representing the implementation of the priority queue, and
a module representing the proofs of correctness of that queue im-
plementation. This strategy allows us to achieve modular verifica-
tion of modular code.

The specification of the function dijkstra is as follows:

∀gxyG. nonnegative_edgesG ∧ x ∈ nodesG ∧ y ∈ nodesG

⇒ App3 dijkstra g x y (g GraphAdjListG)
(λd. [d = distGxy] ∗ (g GraphAdjListG))

It states that if g is the location of a data structure that represents
a mathematical graph G through adjacency lists, if the edges in G
all have nonnegative weights, and if x and y are indices of two
nodes from that graph, then the application of the function dijkstra
to g, x and y returns a value d that is equal to the length of the
shortest path between x and y in the graph G. Moreover, the above
specification asserts that the structure of the graph is not modified
by the execution of the function.

The representation predicate GraphAdjList is used to relate a
mathematical graph with its representation as an array of lists of
pairs. It is defined as:

GraphAdjListGg ≡ ∃∃N. (g ArrayN) ∗
[∀x. x ∈ nodesG⇔ x ∈ domN] ∗
[∀x ∈ nodes. ∀yw. (x, y, w) ∈ edgesG⇔ mem(y, w)N [x]]

Above, g denotes a value of type Loc, G denotes a mathematical
graph whose nodes are indexed by integers and whose edges have

integer weight, and N is a finite map from integers to lists of pairs
of integers. The definition asserts that x is an index inN if and only
if it is the index of a node in G, and that a pair (y, w) belongs to
the list N [x] if and only if the graph G has an edge of weight w
between the nodes x and y.

The invariant of the main loop of Dijkstra’s algorithm, written
“hinvV BQ” describes the state of the data structures in terms of
three data structures: V is a finite map describing the array v, B
is a finite map describing the array b, and Q is a multiset of pairs
describing the priority queue q. Several logical invariants enforce
constraints ocharacteristic formulae.n the content of V , B and Q.
Those invariants are captured by a record of propositions, written
“invV BQ”. The definition of this record is not shown here but, for
example, the first field of this record ensures that if V [z] contains
the value true then B[z] contains exactly the length of the shortest
path between the source x and the node z in the graph G. The
heap description specifying the memory state at each iteration of
the main loop therefore takes the following form.

hinvV BQ ≡
(g GraphAdjListG) ∗ (v ArrayV)
∗ (b ArrayB) ∗ (q PqueueQ) ∗ [invV BQ]

The proof that the function dijkstra satisfies its specification
consists of two parts. The first part is concerned with a number of
mathematical theorems that justify the method used by Dijkstra’s
algorithm for computing shortest paths. This part, which amounts
to 180 lines of Coq scripts, is totally independent of characteristic
formulae and would presumably be needed in any approach to pro-
gram verification. The second part consists of one theorem, whose
statement is the specification given earlier on, and whose purpose is
to establish that the source code correctly implements Dijkstra’s al-
gorithm. The proof of this theorem follows the structure of the char-
acteristic formula generated, and therefore also follows the struc-
ture of the source code.

Figure 4 show the beginning of the proof script for this ver-
ification theorem. The script contains three kind of tactics. First,
x-tactics are used to make progress through the characteristic for-
mula. For example, the tactic xwhile_inv is used to provide the
loop invariant and the termination relation. Here, termination is jus-
tified by a lexicographical order whose first component is the size
of the number of node treated (this number increases from zero
up to the total number of nodes) and whose second component is
the size of the priority queue. Second, general-purpose Coq tac-
tics (all those whose name does not start with the letter “x”) are
typically used to name variables, unfold invariants, and discharge
simple side-conditions. Third, the proof script contains invocations
of the mathematical theorems mentioned earlier on. For example,
the script contains a reference to the lemma inv_start, which jus-
tifies that the loop invariant holds at the first iteration of the loop.
Overall, this verification proof contains a total of 48 lines, includ-
ing 8 lines of statement of the invariants, and Coq is able to verify
the proof in 8 seconds on a 3 GHz machine.

Figure 5 gives an example of a proof obligation that arises dur-
ing the verification of the function dijkstra. The set of hypotheses
appears above the dashed line. Observe that all the hypotheses are
short and well-named. Those names are provided explicitly in the
proof script. Providing names is not mandatory, however it gener-
ally helps to increase readability and robustness. The proof obliga-
tion appears below the dashed line. It consists of a characteristic
formula being applied to a pre-condition and to a post-condition.
Note that, in Coq, characteristic formula are pretty-printed using
capitalized keywords instead of bold keywords and the sequence
operator is written “;;”.

xcf. introv Pos Ns De. unfold GraphAdjList at 1.
hdata_simpl. xextract as N Neg Adj. xapp. intros Ln.
rewrite <- Ln in Neg. xapps. xapps. xapps. xapps�.
xapps. set (data := fun B V Q => g �> Array N *
v �> Array V * b �> Array B * q �> Heap Q).

set (hinv := fun VQ => let '(V,Q) := VQ in Hexists B,
data B V Q * [inv G n s V B Q (crossing G s V)]).

xseq (fun _ => Hexists V, hinv (V,\)).
set (W := lexico2 (binary_map (count (= true)) (upto n))

(binary_map card (downto 0))).
xwhile_inv W hinv.
(* -- initial state satisfies the invariant -- *)
refine (ex_intro' (_,_)). unfold hinv,data. hsimpl.
applys_eq� inv_start 2. permut_simpl.
(* -- verification of the loop -- *)
intros [V Q]. unfold hinv. xextract as B Inv. xwhilebody.

Figure 4. Beginning of the proof script for Dijkstra’s algorithm

Pos : nonnegative_edges G
Ns : s \in nodes G
Ne : e \in nodes G
Neg : nodes_index G n
Adj : forall x y w : int, x \in nodes G ->

Mem (y, w) (N\(x)) = has_edge G x y w
Nx : x \in nodes G
Vx : � V\(x)
Dx : Finite dx = dist G s x
Inv : inv G n s V' B Q (new_crossing G s x L' V)
EQ : N\(x) = rev L' ++ (y, w) :: L
Ew : has_edge G x y w
Ny : y \in nodes G
__(1/6)
(Let dy := Ret (dx + w) in
Let fy := App ml_array_get b y ; in
If Match

(Case fy = Finite d [d] Then Ret (dy < d) Else
(Case fy = Infinite Then Ret true Else Done))

Then (App ml_array_set b y (Finite dy) ;) ;;
App push (y, dy) h ; Else (Ret tt))

(q �> Pqueue Q * b �> Array B *
v �> Array V' * g �> Array N)

(fun _:unit => hinv' L)

Figure 5. Example of a proof obligation

4.2 Counter function
This example illustrates the treatment of functions with an abstract
local state. A counter function is a function that, every time it
is called, returns the successor of the integer that it returned on
the previous call. The function create constructs a new counter
function. It allocates a fresh reference r with initial contents 0, and
builds a function whose body increments r and returns its contents.

create ≡ λ_. let r = ref 0 in (λ_. (incr r ; get r))

To specify the function create in an abstract manner, we use
a representation predicate, called Cntr. The heap predicate “f
Cntrn” asserts that f is a counter function whose last call returned
the value n. The definition of Cntr involves an existential quantifi-
cation over a predicate I of type “int→ Hprop”, as shown below:

Cntrn f ≡ ∃∃I. (I n) ∗
[∀m. App1 f tt (I m) (λx. [x = m+ 1] ∗ I (m+ 1))]

The existential quantification of I allows us to state that a call to
the counter function f takes the counter from a state “I m” to a
state “I (m + 1)” and returns the value m + 1, without revealing
any details of the implementation of this counter function.

The function create is then specified as producing a function f
that is a counter with internal state 0.

App create tt [] (λf. f Cntr 0)

This specification is sufficient for reasoning about all the calls
to a counter function produced by the function create. That said,
we can go even further in terms of abstraction. Instead of forcing
the client of the function create to manipulate the definition of
Cntr, we can make the definition of the predicate Cntr completely
abstract and instead provide a direct lemma for reasoning about
calls to counter functions. This lemma takes the following form:

∀fn. App f tt (f Cntrn) (λx. [x = n+1]∗f Cntr (n+1))

This example illustrates how the abstract local state of a function
can be entirely packed into a representation predicate.

4.3 Continuations
The CPS-append function has been proposed as a verification chal-
lenge by Reynolds [39], for testing the ability to specify and reason
about continuations that are used in a nontrivial way. The CPS-
append function takes as an argument two lists x and y, as well
as an initial continuation k. In the end, the function calls the con-
tinuation k on the concatenation of this lists x and y. What makes
this function nontrivial is that it does not build the list x++y ex-
plicitly. Instead, the function calls itself recursively using a differ-
ent continuation at every iteration. The nested execution of those
continuations starts from the list y and eventually produces the list
x++y. This list is then passed as an argument to the original con-
tinuation k. The code of the CPS-append function is:

let rec cpsapp (x y:'a list) (k:'a list->'b) : 'b =
match x with
| [] -> k y
| v::x' -> cpsapp x' y (fun z -> k (v::z))

Its specification is as follows, where k has type Func, x and y have
type “listA”, and ++ denotes the concatenation of two Coq lists:

∀AxykHQ. App1 k (x++y)H Q ⇒ App3 cpsappx y kH Q

Slightly more challenging is the verification of the imperative
counterpart of the CPS-append function. It is based on the same
principle as the purely-functional version, except that x and y are
now pointers to mutable lists and that the continuations mutate
pointers in the list x in order to build the concatenation of the two
lists in place. The specification of this imperative version is:

∀AxykLMHQ. (∀z. App1 k z (H ∗ (z Mlist (L++M)))Q)
⇒ App3 cpsapp'x y k (H ∗ (x MlistL) ∗ (y MlistM))Q

Above, the pre-condition asserts that the locations x and y (of
type Loc) correspond to lists called L and M , respectively. The
pre-condition also mentions an abstract heap predicate H , which
is needed because the frame rule usually does not apply when
reasoning about CPS functions. Indeed, the entire heap needs to
be passed on to the continuation3. The continuation k is ultimately
called on a location z that corresponds to the list L++M . The proof
that the imperative CPS-append function satisfies its specification
is conducted by induction on L. It is only 8 lines long.

4.4 Imperative list iterator
This last example requires a generalized version of the representa-
tion predicate for lists. So far, we have used heap predicates of the
form m MlistL. This works well when the values in the list are
of some base type, however in general the values stored in the list

3 Thielecke [40] suggested that answer-type polymorphism could be used
to design reasoning rules that would save the need for quantifying over
the heap H passed on to the continuation. However, his technique has
limitations, in particular it does not support recursion through the store.

need to be described using their own representation predicate, call
it T . To that end, we use a more general parametric representation
predicate, writtenMlistofT . (The predicateMlist used so far can be
obtained as the application of Mlistof to the identity representation
predicate, which is defined as “λX. λx. [x = X]”.) For example,
we will later use the heap predicate “m Mlistof CntrL” to de-
scribe a mutable list that starts at location m and contains a list of
counter functions whose internal states are described by the integer
values from the Coq list L.

We are now ready to describe the specification of an higher-
order iterator on mutable lists. This iterator, called iter, is imple-
mented using a while loop. The execution of “iter f m” results in
the function f being applied to all the values stored in the list whose
head is located as address m. This execution may result in two ef-
fects. First, it may modify the values stored in the list. Second, it
may affect the state of other mutable data structures. Thus, if the
initial state is described as H ∗ (m MlistofT L), then the final
state generally takes the form H ′ ∗ (m MlistofT L′), where H
and H ′ are two heap descriptions and L and L′ are two Coq lists.
To introduce some abstraction, we use a predicate called I . The in-
tention is that the proposition I LL′HH ′ captures the fact that,
for any m, the term “iter f m” admits the pre-condition H ∗ (m
MlistofT L) and the post-condition λ_. H ′∗(m MlistofT L′).

Two assumptions are provided for reasoning about the predi-
cate I . The first one concerns the case where the list is empty. In
this case, both L and L′ are empty, andH ′ must matchH . The sec-
ond one concerns the case where the list is not empty. In this case, a
call to f is first performed and then a recursive call to the function
iter is made. The initial state of the list is then of the form X :: L
and the final state is of the form X ′ :: L′. The values X and X ′

are related by the specification of the function f . This specification
also relates the input state H with an intermediate state H ′′, which
corresponds to the state after the call to f and before the recursive
call to iter. The formal statement of the assumptions about I are:

H1 ≡ ∀H. I nil nilHH

H2 ≡ ∀XX ′LL′HH ′H ′′.
(∀x. App1 f x (H ∗ x T X) (H ′′ ∗ x T X ′))
∧ I LL′H ′′H ′ ⇒ I (X :: L) (X ′ :: L′)HH ′

Above, L and L′ have type listA, f has type Func, X has type A,
x has type B, and T has type A→ B → Hprop.

To establish that the term “iter f m” admits the pre-condition
H ∗ (m MlistofT L) and the post-condition λ_. H ′ ∗ (m
MlistofT L′), it suffices to prove the proposition I LL′HH ′,
where I is an abstract predicate for which only the assumptionsH1

andH2 are provided. This result is captured by the specification of
iter shown next:

∀ABTfmLL′HH ′. (∀I. H1 ∧ H2 ⇒ I LL′HH ′)
⇒ App2 iter f m (H ∗ (m MlistofT L))

(λ_. H ′ ∗ (m MlistofT L′))

To check the usability of this specification, we describe an
example, which involves a list m of distinct counter functions (as
defined in §4.2). The idea is to make a call to each of those counters.
The results of those calls are simply ignored. What matters here is
that every counter sees its current state incremented by one. The
function steps implements this scenario.

steps ≡ λm. iter (λf. ignore (f tt))m

The heap predicate “m Mlistof CntrL” asserts that the mutable
list starting at locationm contains a list of counter functions whose
internal states are described by the integer values from the Coq
list L. A call to the function steps on the list m increments the
internal state of every counter, so the the final state is described by
the heap predicate “m Mlistof CntrL′”, where L′ is obtained

by adding one to all the elements in L. Thus, steps is specified as:

∀mL. App1 stepsm (m Mlistof CntrL)
(λ_. m Mlistof Cntr (map (+1)L))

This example demonstrates the ability of CFML to formally
verify the application of a polymorphic higher-order iterator to an
imperative list of first-class functions with abstract local state.

5. Related work
Program logics A program logic consists of a specification lan-
guage and of a set of reasoning rules that can be used to establish
that a program satisfies a specification. Program logics do not di-
rectly provide an effective program verification tool, but they may
serve as a basis for justifying the correctness of such a tool. Hoare
logic [17] is probably the most well-known program logic. Sepa-
ration Logic [39] is an extension of Hoare logic that supports lo-
cal reasoning. A number of verification tools have been built upon
ideas from Separation Logic, for example Smallfoot [5]. Separation
Logic frequently been exploited inside standard interactive proof
assistants (e.g., [1, 10, 26, 27, 30]), including the present paper. Dy-
namic Logic [15] is another program logic. In this modal logic, the
formula “H1 → 〈t〉H2” asserts that, in any heap satisfyingH1, the
sequence of commands t terminates and produces a heap satisfying
H2. Dynamic Logic serves as the foundation of the KeY system
[4], which targets the verification of Java programs. One problem
with Dynamic Logics is that they depart from standard mathemati-
cal logic, precluding the use of a standard proof assistant.

The aforementioned logics usually do not support reasoning
about higher-order functions. A program logic supporting them has
been developed by Honda, Berger and Yoshida [6]. The specifica-
tion language of Honda et al’s logic is a nonstandard first-order
logic, which features an ad-hoc construction, called evaluation for-
mula and written {H} v • v′ ↘ x {H ′}. This proposition asserts
that under a heap satisfying H , the application of the value v to
the value v′ produces a result named x in a heap satisfying H ′.
This evaluation formula plays a similar role as that of the predi-
cate App. Another specificity of the specification language is that
its values are the values of the programming language, including
non-terminating functions. This use of such a nonstandard speci-
fication language prevented Honda et al from building a practical
verification tool on top of an existing theorem prover. In contrast,
the characteristic formulae that we generate are expressed in terms
of a standard higher-order logic predicates.

Verification condition generators A Verification Condition Gen-
erator (VCG) is a tool that, given a program annotated with its spec-
ification and its invariants, extracts a set of proof obligations that
entails the correctness of the program. A large number of VCGs
targeting various programming languages have been implemented
in the last decades. For example, the Spec-# tool [2] parses anno-
tated C# programs, and then produces proof obligations that can
then be sent to an SMT solver. Because most SMT solvers can only
cope with first-order logic, the specification language is usually re-
stricted to this fragment, and therefore does not benefit from the
expressiveness, modularity, and elegance of higher-order logic.

A few tools support higher-order logic. One notable example
is the tool Why [12]. When the proof obligations produced by
Why cannot be verified automatically by at an SMT solver, they
can be discharged using an interactive proof assistant such as Coq.
Recent work has focused on trying to extend Why with support for
higher-order functions [20], building upon ideas developed for the
tool Pangolin [38]. Another tool that supports higher-order logic
is Jahob [42], which targets the verification of programs written in
a subset of Java. For discharging proof obligations, Jahob relies
on a translation from (a subset of) higher-order logic into first

order logic, as well as on automated theorem provers extended with
specialized decision procedures for reasoning on lists, trees, sets
and maps. A key feature of Jahob is its integrated proof language,
which allows the user to include proof hints directly inside the
source code. Those hints are intended to guide automated theorem
provers, in particular by indicating how to instantiate existential
variables. When trying to verify complex programs, the central
difficulty is to come up with the correct invariants, a process that
usually requires a great number of iterations. With a VCG tool such
as Why or Jahob, if the user changes, say, a local loop invariant,
then he needs to run the VCG tool, wait for the SMT solvers to try
and discharge the proof obligations, and then read the remaining
obligations. On the contrary, with characteristic formulae, the user
works in an interactive setting that provides nearly-instantaneous
feedback on changes to the invariants.

Shallow embeddings The shallow embedding approach to pro-
gram verification aims at relating a source program to a correspond-
ing logical definition. The relationship can take three forms.

First, one can write a logical definition and use an extraction
mechanism (e.g., [25]) to translate the code into a conventional
programming language. For example, Leroy’s certified C com-
piler [23] is developed in this way. Also based on extraction is
the tool Ynot [10], which implements Hoare Type Theory (HTT)
[33], by axiomatically extending the Coq language with a monad
for encapsulating side effects and partial functions. HTT was also
later re-implemented by Nanevski et al [34] without using any ax-
ioms, yet at the expense of loosing the ability to reason on higher-
order stores. In HTT, the monad involved has a type of the form
“STsepP Q”, and it correponds to a partial-correctness specifica-
tion with pre-condition P and post-conditionQ. Verification proofs
take the form of Coq typing derivations for the source code. So,
program verification is done at the same time as type-checking the
source code. This is a significant difference with characteristic for-
mulae, which allow verifying programs after they have been writ-
ten, without requiring the source code to be modified in any way.
Moreover, characteristic formulae are able to target an existing pro-
gramming language, whereas the Ynot programming language has
to fit into the logic it is implemented in. For example, supporting
handy features such as alias-patterns and when-clauses would be a
real challenge for Ynot. (Pattern matching is so deeply hard-wired
in Coq that it would be very hard to modify it.)

Another technical difficulty faced by HTT is the treatment of
auxiliary variables. A specification of the form “STsepP Q” does
not naturally allow for auxiliary variables to be used for sharing in-
formation between the pre- and the post-condition. Indeed, if P and
Q both refer to a auxiliary variable x quantified outside of the type
“STsepP Q”, then x is considered as a computationally-relevant
value and thus it will appear in the extracted code. Ynot [10] re-
lies on a hack for simulating the Implicit Calculus of Constructions
[3], in which computationally-irrelevant value are tagged explic-
itly. A danger of this approach is that forgetting to tag a variable as
auxiliary does not produce any warning yet results in the extracted
code being inefficient. Other implementation of HTT have taken a
different approach by relying on post-conditions that may also re-
fer not only to the output heap but also to the input heap [33, 34].
The use of such binary post-conditions makes it possible to elimi-
nate auxiliary variables by duplicating the pre-condition inside the
post-condition. Typically, in informal notation, “∀x. STsepP Q”
gets encoded as “STsep (∃x.P) (∀x. P ⇒ Q)”. HTT [34] then
provides tactics to try and avoid the duplication of proof obliga-
tions. However, duplication typically remains visible in specifica-
tions, which is problematic. Indeed, specifications are part of the
trusted base, so their statement should be as simple as possible.

The second way of relating a source program to a logical defi-
nition consists in decompiling a piece of conventional source code

into a set of logical definitions. This approach is used in the LOOP
compiler [19] and also in Myreen and Gordon’s work [31]. The
LOOP compiler takes Java programs and compiles them into PVS
definitions. The proof tactics rely on a weakest-precondition cal-
culus to achieve a high degree of automation. However, interactive
proofs require a lot of expertise: LOOP requires the user to un-
derstand the compilation scheme involved [19]. By contrast, the
tactics manipulating characteristic formulae allow conducting in-
teractive proofs of correctness without detailed knowledge on the
construction of those formulae. Myreen and Gordon showed how
to decompile machine code into HOL4 functions [31]. The lem-
mas proved interactively about the generated HOL4 functions can
then be automatically transformed into lemmas about the behav-
ior of the corresponding pieces of machine code. Importantly, the
translation into HOL4 is possible only because the functional trans-
lation of a while loop is a tail-recursive function, and because tail-
recursive functions can be accepted as logical definitions in HOL4
without compromising the soundness of the logic even when the
function is non-terminating. Without exploiting this peculiarity of
tail-recursive functions, the automated translation of source code
into HOL4 would not be possible. For this reason, it seems hard to
apply this decompilation-based approach to the verification of code
featuring general recursion and higher-order functions.

A third approach to using a shallow embedding consists in writ-
ing the program to be verified twice, once as a program defini-
tion and once as a logical definition, and then proving that the two
are related. This approach has been employed in the verification
of a microkernel as part of the Sel4 project [22]. Compared with
Myreen and Gordon’s work [29, 31], the main difference is that
the low-level code is not decompiled automatically but instead de-
compiled by hand, and that this decompilation phase is then proved
correct using semi-automated tactics. The Sel4 approach thus al-
lows for more flexibility in the choice of the logical definitions, yet
at the expense of a bigger investment from the user. Moreover, like
in Myreen and Gordon’s work, general recursion is problematic: all
the code of the Sel4 microkernel written in the shallow embedding
had to avoid any form of nontrivial recursion [21].

In summary, all approaches based on shallow embedding share
one central difficulty: the need to overcome the discrepancies be-
tween the programming language and the logical language, in par-
ticular with respect to the treatment of imperative functions, partial
functions, and recursive functions. In contrast, characteristic for-
mulae rely on the first-order data type Func for representing func-
tions. As established by the completeness theorem, this approach
supports reasoning about all forms of first-class functions.

Deep embeddings A deep embedding consists of describing the
syntax and the semantics of a programming language in the logic
of a proof assistant, using inductive definitions. In theory, a deep
embedding can be used to verify programs written in any program-
ming language, without any restrictions in terms of expressiveness
(apart from those of the proof assistant). Mehta and Nipkow [28]
have set up the first proof-of-concept by formalizing a basic pro-
cedural language in Isabelle/HOL and proving Hoare-style reason-
ing rules correct with respect to the semantics of that language.
More recently, Shao et al have developed the frameworks such as
XCAP [35] for reasoning in Coq about short but complex assem-
bly routines. In previous work [7], the author has worked on a deep
embedding of the pure fragment of Caml inside the Coq proof as-
sistant. This work then lead to the development of characteristic
formulae, which can be viewed as an abstract layer built on top of a
deep embedding: characteristic formulae hide the technical details
associated with the explicit representation of syntax while retaining
the high expressiveness of that approach. In particular, characteris-
tic formulae avoid the explicit representation of syntax, which is
associated with many technical difficulties (including the represen-

tation of binders). Moreover, when moving to characteristic formu-
lae, specifications can be greatly simplified because program values
such as tuples and functional lists become directly represented with
their logical counterpart.

6. Conclusion
In this paper, we have explained how to build characteristic formu-
lae for imperative programs, and we have shown how to use those
formulae in practice to formally verify programs involving nontriv-
ial interactions between first-class functions and mutable state.

References
[1] Andrew W. Appel. Tactics for separation logic. Unpublished draft,

http://www.cs.princeton.edu/appel/papers/septacs.pdf, 2006.
[2] Mike Barnett, Rob DeLine, Manuel Fähndrich, K. Rustan M. Leino,

and Wolfram Schulte. Verification of object-oriented programs with
invariants. Journal of Object Technology, 3(6), 2004.

[3] Bruno Barras and Bruno Bernardo. The implicit calculus of construc-
tions as a programming language with dependent types. In FoSSaCS,
volume 4962 of LNCS, pages 365–379. Springer, 2008.

[4] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt. Verification of
Object-Oriented Software: The KeY Approach, volume 4334 of LNCS.
Springer-Verlag, Berlin, 2007.

[5] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Smallfoot:
Modular automatic assertion checking with separation logic. In Inter-
national Symposium on Formal Methods for Components and Objects,
volume 4111 of LNCS, pages 115–137. Springer, 2005.

[6] Martin Berger, Kohei Honda, and Nobuko Yoshida. A logical analysis
of aliasing in imperative higher-order functions. In ICFP, pages 280–
293, 2005.

[7] Arthur Charguéraud. Verification of call-by-value functional
programs through a deep embedding. 2009. Unpublished.
http://arthur.chargueraud.org/research/2009/deep/.

[8] Arthur Charguéraud. Characteristic Formulae for Mechanized Pro-
gram Verification. PhD thesis, Université Paris-Diderot, 2010.

[9] Arthur Charguéraud. Program verification through characteristic for-
mulae. In ICFP, pages 321–332. ACM, 2010.

[10] Adam Chlipala, Gregory Malecha, Greg Morrisett, Avraham Shinnar,
and Ryan Wisnesky. Effective interactive proofs for higher-order
imperative programs. In ICFP, 2009.

[11] The Coq Development Team. The Coq Proof Assistant Reference
Manual, Version 8.2, 2009.

[12] Jean-Christophe Filliâtre. Verification of non-functional programs us-
ing interpretations in type theory. Journal of Functional Program-
ming, 13(4):709–745, 2003.

[13] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen.
The essence of compiling with continuations. In PLDI, pages 237–
247, 1993.

[14] Susanne Graf and Joseph Sifakis. A modal characterization of obser-
vational congruence on finite terms of CCS. Information and Control,
68(1-3):125–145, 1986.

[15] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. The
MIT Press, Cambridge, Massachusetts, 2000.

[16] Matthew Hennessy and Robin Milner. On observing nondeterminism
and concurrency. In ICALP, volume 85 of LNCS, pages 299–309.
Springer-Verlag, 1980.

[17] C. A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576–580, 583, 1969.

[18] Kohei Honda, Martin Berger, and Nobuko Yoshida. Descriptive and
relative completeness of logics for higher-order functions. In ICALP,
volume 4052 of LNCS. Springer, 2006.

[19] Bart Jacobs and Erik Poll. Java program verification at nijmegen:
Developments and perspective. In ISSS, volume 3233 of LNCS, pages
134–153. Springer, 2003.

[20] Johannes Kanig and Jean-Christophe Filliâtre. Who: a verifier for
effectful higher-order programs. In ML’09: Proceedings of the 2009
ACM SIGPLAN workshop on ML, pages 39–48. ACM, 2009.

[21] Gerwin Klein, Philip Derrin, and Kevin Elphinstone. Experience
report: seL4: formally verifying a high-performance microkernel. In
ICFP, pages 91–96. ACM, 2009.

[22] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and
Simon Winwood. seL4: Formal verification of an OS kernel. In
Proceedings of the 22nd Symposium on Operating Systems Principles
(SOSP), Operating Systems Review (OSR), pages 207–220, Big Sky,
MT, 2009. ACM SIGOPS.

[23] Xavier Leroy. Formal certification of a compiler back-end or: pro-
gramming a compiler with a proof assistant. In POPL, pages 42–54,
2006.

[24] Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy, and
Jérôme Vouillon. The Objective Caml system, 2005.

[25] Pierre Letouzey. Programmation fonctionnelle certifiée – l’extraction
de programmes dans l’assistant Coq. PhD thesis, Université Paris 11,
2004.

[26] Nicolas Marti, Reynald Affeldt, and Akinori Yonezawa. Towards
formal verification of memory properties using separation logic, 2005.

[27] Andrew McCreight. Practical tactics for separation logic. In TPHOLs,
volume 5674 of LNCS, pages 343–358. Springer, 2009.

[28] Farhad Mehta and Tobias Nipkow. Proving pointer programs in
higher-order logic. Information and Computation, 199(1–2), 2005.

[29] Magnus O. Myreen. Formal Verification of Machine-Code Programs.
PhD thesis, University of Cambridge, 2008.

[30] Magnus O. Myreen. Separation logic adapted for proofs by rewriting.
In Interactive Theorem Proving (ITP), volume 6172 of LNCS, pages
485–489. Springer, 2010.

[31] Magnus O. Myreen and Michael J. C. Gordon. Verified LISP imple-
mentations on ARM, x86 and powerPC. In TPHOLs, volume 5674 of
LNCS, pages 359–374. Springer, 2009.

[32] Aleksandar Nanevski and Greg Morrisett. Dependent type theory of
stateful higher-order functions. Technical Report TR-24-05, Harvard
University, 2005.

[33] Aleksandar Nanevski, J. Gregory Morrisett, and Lars Birkedal. Hoare
type theory, polymorphism and separation. Journal of Functional
Programming, 18(5-6):865–911, 2008.

[34] Aleksandar Nanevski, Viktor Vafeiadis, and Josh Berdine. Structuring
the verification of heap-manipulating programs. In POPL, pages 261–
274. ACM, 2010.

[35] Zhaozhong Ni and Zhong Shao. Certified assembly programming with
embedded code pointers. In POPL, 2006.

[36] Peter O’Hearn, John Reynolds, and Hongseok Yang. Local reasoning
about programs that alter data structures. In CSL, volume 2142 of
LNCS, pages 1–19, Berlin, 2001. Springer-Verlag.

[37] Chris Okasaki. Purely Functional Data Structures. Cambridge Uni-
versity Press, 1999.

[38] Yann Régis-Gianas and François Pottier. A Hoare logic for call-by-
value functional programs. In MPC, 2008.

[39] John C. Reynolds. Separation logic: A logic for shared mutable data
structures. In LICS, pages 55–74, 2002.

[40] Hayo Thielecke. Frame rules from answer types for code pointers. In
POPL, pages 309–319, 2006.

[41] Thomas Tuerk. Local reasoning about while-loops. In VSTTE LNCS,
2010.

[42] Karen Zee, Viktor Kuncak, and Martin C. Rinard. An integrated proof
language for imperative programs. In PLDI, pages 338–351. ACM,
2009.

