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Received: date / Accepted: date

Abstract This paper provides an introduction to the locally nameless approach to

the representation of syntax with variable binding, focusing in particular on the use of

this technique in formal proofs. First, we explain the benefits of representing bound

variables with de Bruijn indices while retaining names for free variables. Then, we

explain how to describe and manipulate syntax in that form, and show how to define

and reason about judgments on locally nameless terms.

1 Introduction

Most programming languages, type systems and logical systems make use of variables.

Many different techniques are available to represent syntax with variable bindings in

a given programming language or in a given formal theory. This paper focuses on one

particular representation of bindings, called the locally nameless representation. It has

been successfully used to mechanize soundness proofs of type systems, properties of

the semantics of λ-calculi, and correctness proofs of program transformations [Leroy,

2007, Aydemir et al., 2008, Charguéraud, 2009]. This representation has also been

shown useful in the implementation of type checkers and proof checkers, among which

Coq [Coq Development Team, 2009], Lego [Luo and Pollack, 1992], Isabelle [Nipkow

et al., 2002], HOL 4 [Norrish and Slind, 2007] and Epigram [Altenkirch et al., 2005].

The locally nameless representation relies on de Bruijn indices to represent bound

variables but uses names to represent free variables. Such a mixed syntax allows for

a very simple implementation of substitution and β-reduction. By featuring a unique

representation of terms, it avoids traditional issues related to α-conversion. In the same

time, it allows for a reasoning style fairly close to the style in which pencil-and-paper

proofs are conventionally carried out. The purpose of this paper is to provide a thorough
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introduction to the locally nameless representation, explaining how it works, why it

works, and how to use it in formal reasoning.

The introduction of the locally nameless representation is not a contribution of this

paper. The possibility for combining de Bruijn indices with names was in fact mentioned

by de Bruijn [1972] in his founding paper. It has been used in early implementations of

proof assistants, starting with Huet’s Constructive Engine [1989] and Paulson’s Isabelle

proof system [1986]. In the context of formal proofs, Gordon [1993] appears to be the

first to have used the locally nameless representation, although he used it only as a

basis for building an interface with named λ-terms rather than directly reasoning on

locally nameless syntax. Later work by Gordon and Melham [1996] also uses locally

nameless terms as a model for an abstract axiomatic representation of named terms.

Pollack [2006] has more recently emphasized the benefits of the locally nameless

representation in the context of the POPLMark challenge [Aydemir et al., 2005], build-

ing on his experience of formalizing Pure Type Systems with a representation featuring

distinguished bound named variables and free named variables [McKinna and Pollack,

1993]. The locally nameless representation was first experimented by Leroy [2007] on

the POPLMark Challenge. Further investigations and larger-scale case studies using

this representation were then conducted by Aydemir et al. [2008].

The first contribution of this paper is a thorough and complete description of

the locally nameless representation. We start by motivating the introduction of this

technique through an analysis of the strengths and drawbacks of related approaches to

representing bindings. We then present the operations involved for manipulating locally

nameless syntax, and discuss their implementation. We also give formal statements of

the key properties verified by these operations and explain when such properties need

to be exploited in formal reasoning.

The second contribution of this paper is a detailed introduction to carrying out

formal reasoning on programming languages and type systems described in locally

nameless style. We first recall how to define judgments on λ-terms using a cofinite

quantification technique introduced by the author and his co-authors [Aydemir et al.,

2008]. We then show how to formally prove standard properties about these judgments

such as type soundness, proof of confluence and semantic preservation.

The third contribution of this paper consists in the generalization of the locally

nameless representation to advanced forms of binding structures. We explain how to

support multiple binders, recursive binders, mutually-recursive binders and pattern

matching structures, both for linear and non-linear patterns. Supporting these ingredi-

ents is essential to the formalization of the syntax and semantics of realistic program-

ming languages.

2 The locally nameless representation

There exist many possibilities for representing variable bindings. Our goal is not to

cover all of them, but only to discuss representations that are closely-related to the

locally nameless representation. (The paper by Aydemir et al. [2008] contains a survey

of binding techniques.) Most issues related to variable bindings can be studied on a

language as simple as the pure λ-calculus. Thus, only the syntax of λ-terms is considered

throughout the core of the paper. Support for more advanced binding structures is

investigated afterwards (§7).
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2.1 Named representations: raw terms and quotiented terms

The most common representation of λ-terms relies on the use of names: each abstraction

and each variable bear a name. The syntax of raw named terms is described by the

following grammar.

t := varx | absx t | app t t

The objects from this grammar are called raw terms because they are not isomor-

phic to λ-terms. For example, the two raw terms “absx (varx)” and “abs y (var y)” are

two different objects, although the two λ-terms “λx. x” and “λy. y” should be consid-

ered equal because the theory of λ-calculus identifies terms that are α-equivalent. Due

to the mismatch between raw terms and λ-terms, there are pieces of reasoning from

λ-calculus textbooks that cannot be formalized using raw terms.

In order to obtain a representation of terms truly isomorphic to λ-terms, we need

to build a quotient structure, quotienting the set of raw terms with respect to alpha-

equivalence. This construction based on a quotient corresponds very closely to the of

presentation from standard textbooks on λ-calculus.

In practice, though, working formally with a quotient structure is not that straight-

forward. In order to define a function or a relation on λ-terms, we need to first define

it on raw terms, then show it compatible with α-equivalence, and finally lift it to the

quotient structure. For instance, if f is a unary function on terms in the named repre-

sentation, then, for f to be accepted as a definition on λ-terms, we must prove that, for

any two alpha-equivalent terms t1 and t2, the two applications f(t1) and f(t2) yield

α-equivalent results. Lifting definitions to the quotient structure is typically long and

tedious. Fortunately, a lot of this work can be automated. For example, Urban’s nom-

inal package [2008] aims at factorizing and automating definitions and proofs about

data types involving binders. Yet, at this time, there are still a number of advanced

binding structures that are not supported by the nominal package.

2.2 The locally named representation

The locally nameless representation is closely related to the locally named represen-

tation, which has been extensively developed by McKinna and Pollack [1993]. This

representation syntactically distinguishes between bound variables and free variables.

Bound variables are represented using a name, written x. Free variables, also called pa-

rameters, are represented using another kind of names, written p. Abstractions, which

always bind “bound variables”, carry a bound variable name. The grammar of locally

named terms can thus be described as follows.

t := bvarx | fvar p | absx t | app t t

The main interest of the locally named representation is that a bound name and

a free name can never be confused. In particular, one never needs to α-rename bound

names in order to avoid clashes with free variable names. Moreover, the implementa-

tion of capture-avoiding substitution is made significantly simpler by the separation of

bound and free variables.

One drawback that remains about the locally nameless representation is that it

is not strictly-speaking isomorphic to λ-terms. Here again, two terms may be α-

equivalence but not syntactically equal. Even though many results can be formalized
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using the un-quotiented locally named representation, the construction of a quotient

structure is required at some point for the sake of adequacy of the formalization.

2.3 The de Bruijn representation

There exists another standard approach to representing λ-terms. Using de Bruijn in-

dices [1972], one can build a data type that is isomorphic to the set of λ-terms. In this

representation, abstractions do not mention any name (they are “nameless”), and each

variable bears a natural number that indicates the number of abstractions to be passed

by before reaching the abstraction to which the variable is bound. More precisely, a

variable marked with an index i points towards the “(i+ 1)-th” enclosing abstraction.

The grammar for terms in de Bruijn syntax, which appears next, includes variables

built upon an index and nameless abstractions.

t := var i | abs t | app t t

For example, the λ-term “λx. x” is represented as “abs (var 0)”, which can be also

written “λ. 0”. Similarly, the term “λx. ((λy. y x)x)” is represented as “λ. ((λ. 0 1) 0)”.

The key advantage of using indices is that no quotient structure is required. More-

over, no α-renaming operation is ever needed when reasoning on λ-terms. However, the

de Bruijn representation suffers from one major drawback: indices are very sensitive to

changes in the term in which they occur. In particular, de Bruijn terms involve a shift-

ing operation, which consists in incrementing in a term the value of all the indices that

are greater than a given bound. It is often the case that conventional paper proofs need

to undergo nontrivial arrangements in order to accommodate shifting. For example, in

a proof of type soundness for a system with dependent types, the statement and proof

of the weakening lemma is made significantly more complex because shifting needs to

be applied to some of the values from the typing context.

The de Bruijn representation has shown its effectiveness in proofs of complex the-

orems, like Barras and Werner’s formalization of Coq in Coq [1997]. Nevertheless, a

number of researchers find the gap too large between the informal presentation and

the formal de Bruijn presentation of a same theory [Aydemir et al., 2005].

2.4 The locally nameless representation

The locally nameless combines the benefits of the locally named representation with

those of the de Bruijn representation. By using de Bruijn indices to represent bound

variables, it avoids the introduction of α-equivalence classes. In the same time, by using

names to represent free variables, it avoids the need for shifting de Bruijn indices.

The grammar of locally nameless terms thus involves a constructor for bound vari-

ables, built upon a de Bruijn index, and a constructor for free variables, built upon

a name. Abstractions, like in de Bruijn syntax, are nameless: they do not carry any

name.

t := bvar i | fvarx | abs t | app t t

For example, the λ-term “λx. x y”, which contains a bound variable x and a free variable

y, is represented in locally nameless syntax as “abs (app (bvar 0) (fvar y))”, which may

also be written “λ. 0 y”. Note that not all syntactic terms correspond to an actual
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λ-term. For instance, “abs (bvar 1)” is not a valid locally nameless term because the

bound variable with index 1 does not refer to any abstraction within its term. This

issue of improper terms is addressed later on (§3.3).

Free variables are represented using names, also called atoms. Atoms can be im-

plemented using any datatype that support a comparison function and a fresh name

generator. The comparison function is used to test whether two atoms are equal (i.e.,

equality on atoms needs to be decidable). The fresh name generator, written “fresh”,

is used to pick an atom fresh from any given finite set of atoms (in particular, there

should be infinitely many atoms). In practice, we usually implement atoms using nat-

ural numbers.

3 Operations on locally nameless terms

This section describes the operations used to manipulate locally nameless terms. In

particular, two operations are central to this representation. Variable opening turns

some bound variables into free variables. It is used to investigate the body of an ab-

straction. Variable closing turns some free variables into bound variables. It is used to

build an abstraction given a representation of its body. In this section, we also explain

how to rule out ill-formed terms allowed by the locally nameless syntax.

Note that the definitions and lemmas presented in this section are not very novel.

Most of them have appeared either in Gordon’s early work (1993) on locally nameless

syntax or in McKinna and Pollack’s work (1993) on the locally named representation,

which has a lot in common with the locally nameless representation.

3.1 Variable opening

With the named representation, an abstraction takes the form “λx. t”. To investigate

the body of this abstraction, we simply works with the term t. With the locally nameless

representation, an abstraction has the form “abs t” and it is our responsibility to provide

a fresh name x to open the abstraction. The result of applying the variable opening oper-

ation to t and x is a term, written tx, that describes the body of the abstraction “abs t”.

More precisely, given an abstraction “abs t” and a variable name x that does not appear

in t, the term tx is a copy of t in which all the bound variables referring to the outer

abstraction of “abs t” have been replaced with the free variable “fvarx”. For example,

consider the abstraction “abs (app (abs (app (bvar 0) (bvar 1))) (bvar 0))”; the opening of

its body with the name x is the term “app (abs (app (bvar 0) (fvarx)))(fvarx) ”.

The implementation of variable opening needs to traverse a term recursively, and

find all the leaves of the form “bvar i” whose index i is equal to the number of abstrac-

tions enclosing that variable. Variable opening is thus defined in terms of a recursive

function, written “{k → x} t”, that keeps track of the number k of abstractions that

have been passed by. Initially, the value of k is 0, so variable opening is defined as:

tx ≡ {0→ x} t

The value of k is then incremented each time an abstraction is traversed. When reaching

a bound variable with index i, the value of i is compared against the current value of k.

If i is equal to k, then the bound variable is replaced with the free variable named x,
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otherwise it is unchanged. Note that free variables already occurring in the term are

never affected by a variable opening operation.

{k → x} (bvar i) ≡ if (i = k) then (fvarx) else (bvar i)

{k → x} (fvar y) ≡ fvar y

{k → x} (app t1 t2) ≡ app ({k → x} t1) ({k → x} t2)

{k → x} (abs t) ≡ abs ({(k + 1)→ x} t)

3.2 Variable closing

Symmetrically to variable opening, we may want to build an abstraction given its

body. With the named representation, we consider a term t and a name x, and we

simply build the abstraction “λx. t”. All the variables named x are abstracted, except

those that already appear below an abstraction named x. With the locally nameless

representation, we consider a term t and a name x to be abstracted in t, and we

build a term, written \xt, by applying the variable closing operation to t and x. All

the variables named x occurring in t are abstracted, without exception (indeed, no

shadowing is possible with the locally nameless syntax). The abstraction may then be

constructed as “abs (\xt)”. More precisely, the term \xt is a copy of t in which all the

free variables named x have been replaced with a bound variable. The indices of those

variables are chosen in such a way that all the bound variables introduced are pointing

towards the outer abstraction of “abs (\xt)”.

The implementation of variable closing follows a pattern similar to the implemen-

tation of variable opening. Its implementation is based on a recursive function, written

“{k ← x} t”, that keeps track of the number k of abstractions that have been passed by.

Again, the value of k is 0 initially and it is incremented at each abstraction. Variable

closing is defined as follows:
\xt ≡ {0← x} t

When the recursive function reaches a free variable with name y, it compares the name

y with the name x. If the two names match, then the free variable y is replaced with

a bound variable of index k, otherwise it is left unchanged. Note that bound variables

already occurring in the term are never affected by variable closing.

{k ← x} (bvar i) ≡ bvar i

{k ← x} (fvar y) ≡ if (x = y) then (bvar k) else (fvar y)

{k ← x} (app t1 t2) ≡ app ({k ← x} t1) ({k ← x} t2)

{k ← x} (abs t) ≡ abs ({(k + 1)← x} t)

Variable closing is effectively the inverse function of the variable opening operation.

Opening the body t of an abstraction with a fresh name x and then closing it with the

same name x returns t. Symmetrically, closing a term t with a name x and then opening

it with the same name x returns t. The corresponding formal statements, shown below,

include technical side-conditions whose meaning is defined further on.

close open var: \x(tx) = t when x # t

open close var: (\xt)
x

= t when lc t

As a corollary, both “variable opening with a fresh name” and “variable closing”

are injective operations on the set of well-formed locally nameless terms. For example,
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injectivity of variable opening is useful to prove that two abstractions “abs t1” and

“abs t2” are equal from the knowledge that their bodies opened with the same fresh

name x are equal, i.e., from the fact that t1
x is equal to t2

x (see §6.7).

3.3 Locally-closed terms

As suggested in the previous section, the locally nameless syntax contains objects

that do not correspond to any valid λ-term. For instance, “abs 3” is such an improper

syntactic object, since the bound variable with index 3 does not refer to any abstraction

inside the term. We need to ensure that terms do not contain any such dangling bound

variable. We say of well-formed terms that they are locally closed. The purpose of this

section is to give a formal characterization of the set of locally closed terms.

Two approaches are possible. The first one consists in investigating the term recur-

sively, opening every abstraction with a name, and checking that no bound variable is

ever reached. The second possible approach relies on an analysis of bound variables,

for checking that each bound variable has an index smaller than the number of enclos-

ing abstractions. We start by describing the first approach, which is the most helpful

for formally reasoning on terms represented in locally nameless style, and study the

approach based on indices afterwards.

The local closure predicate, written “lc t”, characterizes terms that are locally

closed. It is defined using three inductive rules. The first one states that any free

variable is locally closed. The second one states that an application is locally closed if

its two branches are locally closed. The third and last one states that an abstraction

is locally closed if its body opened with some name is itself locally closed. Notice that

a bound variable on its own is never locally closed.

lc (fvarx)
lc-var’

lc t1 lc t2

lc (t1 t2)
lc-app’

lc (tx)

lc (abs t)
lc-abs’

In practice, we use a slightly different rule to deal with abstractions. In the rule

lc-var’, the premise lc (tx) is required to hold for one single name x. Instead, we are

going to require lc (tx) to hold for cofinitely-many names x. More precisely, we consider

that an abstraction “abs t” is locally closed if there exists a finite set of names L such

that, for any name x not in L, the term tx is locally closed.

lc (fvarx)
lc-var

lc t1 lc t2

lc (t1 t2)
lc-app

∀x 6∈ L, lc (tx)

lc (abs t)
lc-abs

The motivation for the cofinite quantification will be discussed in details later on (§4.2).

Another way of characterizing locally closed terms is based on the analysis of the

value of indices appearing in terms. Intuitively, a term is locally closed if and only

if all its bound variables have an index small enough that they actually point to an

abstraction inside the term. To ensure that this is the case, it suffices to verify that

every bound variable has an index smaller than the number of enclosing abstractions.

This intuition is formalized through the predicate “t is closed at level k”, written

“lc at k t”. This predicate is defined recursively on the structure of the term t. The

parameter k is used to maintain the current depth. A bound variable is closed at level
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k if and only if its index is smaller than k. A free variable is closed at any level. The

complete definition of the predicate “closed at level k” appears below.

lc at k (bvar i) ≡ i < k

lc at k (fvarx) ≡ True

lc at k (app t1 t2) ≡ lc at k t1 ∧ lc at k t2
lc at k (abs t) ≡ lc at (k + 1) t

It can be proved that a term is locally closed if and only if it is closed at level 0.

lc from lc at: lc t ⇐⇒ lc at 0 t

In conclusion, there are two approaches to defining local closure. Throughout the

rest of the paper, we only use the inductive definition. Indeed, it involves simpler rules

that do not involve an auxiliary variable k for describing the current depth. Moreover,

the inductive definition gives rise to an induction principle that matches more closely

the way inductions on λ-terms are performed in informal proofs.

3.4 Restriction to locally-closed terms

When formally reasoning on locally nameless terms, we want to manipulate only locally

closed terms. Indeed, in general, it does not make sense to state properties on syntactic

objects that do not correspond to any λ-term. Thus, we need to ensure that any

function that manipulates terms preserves the local closure property, and that any

relation defined on terms is restricted to locally closed terms. The explanation of how

to implement this restriction is postponed to the second part of the paper (see §4.5).

Here, we only describe the properties of the basic operations on terms with respect to

local closure.

One auxiliary definition is useful for stating local closure properties. The predicate

“body t” asserts that t describes the body of a locally closed abstraction. Its definition

is equivalent to the premise of the rule lc-abs that defines locally closed abstractions.

body t ≡ ∃L, ∀x 6∈ L, lc (tx)

An abstraction is locally closed if and only if its body satisfies the predicate body:

lc abs iff body: lc (abs t) ⇐⇒ body t

The definition of body helps stating lemmas describing the behaviour of variable

opening and variable closing operation with respect to local closure. First, if t is a

body, then t opened with variable x is locally closed. Second, if t is locally closed, then

the closing of t with respect to a variable x yields a valid body.

open var lc: body t ⇒ lc (tx)

close var lc: lc t ⇒ body (\xt)
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3.5 Free variables and substitution

The free variable function and the substitution function are essential to reasoning on λ-

terms. In what follows, we describe the definition and properties of these two operations

on locally nameless syntax.

Since free variables are syntactically distinguished from bound variables, the com-

putation of the set of free variable names “fv(t)” occurring in a term t is totally

straightforward: it suffices to gather all the names that occur in t.

fv(bvar i) ≡ ∅
fv(fvarx) ≡ {x}
fv(app t1 t2) ≡ fv(t1) ∪ fv(t2)

fv(abs t) ≡ fv(t)

Throughout the paper, a name x is said to be fresh for a term t, written “x # t”,

if x does not belong to the set of free variables of t. Moreover, a term t is said to be

closed if it has no free variables at all.

x # t ≡ (x /∈ fv(t))

closed t ≡ (fv(t) = ∅)

There are two properties of the free variable function that are specific to the locally

nameless representation. They describe the interaction of fv with variable opening and

variable closing. First, opening a body t with a name x potentially adds x to the set

of its free variables. Second, closing a term t with respect to a name x removes x from

the set of its free variables. These results, which are useful to reason on freshness, can

be formally stated as follows.

open var fv: fv(tx) ⊆ fv(t) ∪ {x}

close var fv: fv(\xt) = fv(t) \ {x}

Another key operation is the substitution function. The notation “[x → u] t” de-

scribes a copy of the term t in which all occurrences of x have been replaced with the

term u. we can implement the substitution with a recursive function that follows the

structure of the term t. When reaching a free variable named y, the function simply

compares y with x, and, in case the two names are equal, it replaces the free variable

y with the term u. The complete description follows. Observe that we need not worry

about shadowing nor variable capture.

[x→ u] (bvar i) ≡ bvar i

[x→ u] (fvar y) ≡ if (x = y) then u else (fvar y)

[x→ u] (app t1 t2) ≡ app ([x→ u] t1) ([x→ u] t2)

[x→ u] (abs t) ≡ abs ([x→ u] t)

There are several properties of the substitution function that are specific to the

locally nameless representation. First, substitution preserves the local closure property.

subst lc: lc t ∧ lcu ⇒ lc ([x→ u] t)

subst body: body t ∧ lcu ⇒ body ([x→ u] t)

Second, substitution commutes with variable opening and variable closing, given suit-

able freshness conditions. Those two results are key for establishing the preservation of
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a given property on terms through substitution (see, e.g., the proof that substitution

preserves typing, §6.2).

subst open var: [x→ u] (ty) = ([x→ u] t)y when x 6= y ∧ lcu

subst close var: [x→ u] (\yt) = \y([x→ u] t) when x 6= y ∧ y # u

Other standard properties of the substitution function can be easily derived. For

instance, the substitution for a fresh name behaves as the identity function.

subst fresh: x # t ⇒ [x→ u] t = t

The definition of substitution presented above can be generalized so as to support

multi-substitutions, where several names are substituted in the same time. Such a

multi-substitution function is parameterized by a map from variable names to terms.

When reaching a free variable whose name belongs to the domain of that map, the

function replaces it with the term bound to that name in the map.

3.6 β-reduction and opening

Beta-reduction is a fundamental operation on λ-terms. We first show how β-reduction

can be implemented in terms of the substitution function and then explain that it

can be implemented more directly in terms of a generalization of the variable opening

operation.

When working with a named representation, the β-reduction rule is stated as:

((λx. t)u) −→β [x→ u] t

With the locally nameless representation, a β-redex takes the form “app (abs t)u”. One

could implement β-reduction by first opening the body t of the abstraction with a fresh

name x, obtaining the term tx, and then substituting u for x in that term. Thus, the

β-reduction rule can be stated as follows:

app (abs t)u −→β [x→ u] (tx) for any x # t

The above statement describes a correct and usable definition, yet a more direct

definition can be devised. Let us analyse the computations described by the expression

“[x→ u] (tx)”. It consists in replacing all the bound variables in t that point to the outer

abstraction of “abs t” with a fresh free variable x, and then replacing all occurrences

of x with the term u. This is equivalent to directly replacing all the relevant bound

variables in t by u, thereby avoiding the introduction of a temporary name x.

This suggests a new operation that generalizes variable opening in the following

way: instead of replacing relevant bound variables with a free variable, it replaces

those bound variables with an arbitrary given term. This new operation, which we

call opening, allows to β-reduce an abstraction “abs t” onto a term u. As it is strictly

more general than variable opening, we reuse the same notation, and write tu. The

new statement of the β-reduction rule, which no longer requires the introduction of an

arbitrary fresh name, appears below.

app (abs t)u −→β tu
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The implementation of opening differs from the implementation of variable opening

only on the case for bound variables. Opening is defined in terms of an auxiliary

recursive function, written “{k → u} t”, that describes the fact that bound variables

at depth k are to be replaced by the term u inside the term t.

tu ≡ {0→ u} t

{k → u} (bvar i) ≡ if (i = k) then u else (bvar i)

{k → u} (fvar y) ≡ fvar y

{k → u} (app t1 t2) ≡ app ({k → u} t1) ({k → u} t2)

{k → u} (abs t) ≡ abs ({(k + 1)→ u} t)

We can prove that the opening operation preserves local closure. (This result generalizes

the lemma open var lc.)

open lc: body t ∧ lcu ⇒ lc (tu)

Variable opening can be recovered as a particular instance of opening. Indeed,

variable opening with a name x is the same as opening with a free variable named x.

Thus, one may define variable opening in terms of opening, and save the need to define

both operations independently. Formally:

tx ≡ t(fvar x)

3.7 Connections between substitution and opening

Substitution replaces free variables with terms, while variable closing replaces free

variables with bound variables and opening replaces bound variables with terms. Thus,

there exists strong connections relating these three functions. The purpose of the follow-

ing investigation is to establish these connections, explain why they hold, and suggest

when they need to be exploited in reasoning.

As explained in the paragraph that motivates the introduction of the open function,

opening with a term u is the same as opening with a fresh variable x and then substi-

tuting u for x. This relationship provides a way to decompose an opening operation in

terms of a variable opening operation and a substitution operation.

subst intro: tu = [x→ u] (tx) when x # t

This property is key to proving properties of β-reduction in terms of a corresponding

property about substitution. For instance, the fact that β-reduction preserves typing

is proved using the fact that substitution preserves typing (see §6.3).

The property subst intro is intuitively a consequence of a more general result

describing the distributivity of substitution over open:

subst open: [x→ u] (tv) = ([x→ u] t)([x→u] v) when lcu

This lemma describes how a substitution commutes with opening. It is involved in the

proof that two independent β-reductions can be permuted, a result used to establish

the confluence of β-reduction (see §6.8).

In a similar way as subst intro relates substitution and opening, there exists a

relation between substitution and variable closing. It states than closing with respect
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to a variable named x is equivalent to first renaming all occurrences of x into y and

then closing with respect to y, for any fresh name y. Here and thereafter, we write

“[x→ y] ” as a shorthand for the renaming operation “[x→ fvar y] ”.

close var rename: \xt = \y([x→ y] t) when y # t

This lemma is useful for establishing that the result of a function defined recursively

on λ-terms does not depend on the fresh names being chosen for investigating bodies

of abstractions (see §6.9).

A corollary of the lemma subst intro is that substitution can be defined in terms

of opening and variable closing. More precisely, in order to replace all occurrences of

a variable x with a term u inside a term t, it suffices to close t with respect to x, and

then open the resulting term with u. This amounts to replacing all occurrences of the

free variable x with bound variables, and then replacing all these freshly introduced

bound variables with copies of the term u.

subst as close open: [x→ u] t = (\xt)
u

In fact, this property can be used as an elegant definition of the substitution function.

Defining substitution in terms of opening and variable closing helps reduce the num-

ber of recursive definitions involved when programming with locally nameless syntax.

However, in the context of reasoning, a direct recursive function turns out to be more

convenient, as it avoids the burden of stating and exploiting lemmas describing how

the substitution function distributes over constructors from the syntax of terms.

3.8 Proofs

Most of the lemmas presented so far have relatively simple proofs, that can be formal-

ized in a proof assistant in just a few lines. Proofs fall in three categories.

Firstly, a number of low-level properties are proved by induction on the struc-

ture of a term. Lemmas close open var, open var fv, close var fv, subst fresh,

subst open and close var rename are proved in this way. For example, consider the

lemma subst open. Given a locally closed term u, we prove by induction on the struc-

ture of t that, for any index k, the following statement holds:

[x→ u] ({k → v} t) = {k → ([x→ u] v)} ([x→ u] t)

All cases are easy except one, where a lemma called open rec lc needs to be exploited.

This lemma, stated below, asserts that substitution for a de Bruijn index does not affect

a locally closed term.

open rec lc: lcu ⇒ ∀k. ({k → v}u) = u

Secondly, a number of lemmas are proved by induction on the derivation of local clo-

sure of a term. Lemmas open close var, close var lc, subst lc and open rec lc

are proved this way. The proofs of subst lc is straightforward, however the proof of

the other lemmas involve a technical intermediate result to handle the abstraction case.

The proof of open rec lc exploits the following lemma (with j equal to 0):

i 6= j ∧ {i→ u} ({j → v} t) = {i→ u} t ⇒ ({i→ u} t) = t
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Similarly, the proof of open close var and that of close var lc exploit the fact:

{i→ y} {j → z} {j ← x} t = {j → z} {j ← x} {i→ y} t when i 6= j ∧ x 6= y ∧ y # t

Those two intermediate results admit direct proofs by induction on the structure of t.

In the previous paragraph, we have explained how to prove results by induction on

the derivation of a local closure judgment. There is another possible way of conducting

those proofs, based on the alternative local closure predicate “lc at k t”. Because the

level k is explicitly exposed with this judgment, the induction can be conducted on

the structure of t. The resulting proofs are slightly simpler. In particular, they avoid

the two technical intermediate lemmas described in the previous paragraph. That said,

this alternative proof technique comes with a significant entry cost. Indeed, it requires

us to define the function lc at and to prove the predicate “lc at 0” equivalent to lc. In

practice, we have found that the cost of defining the function lc at, which has a size

linear in the number of constructions of the language, is greater than the cost of proving

two intermediate lemmas, whose statements and proofs are just a few lines long. For

this reason, we prefer conducting our proofs by induction on the inductively-defined

local closure predicate.

Finally, several properties are deducible from other lemmas. First, subst intro can

be derived from subst open by instantiating v as “fvarx” and exploiting the lemma

subst fresh to show that “[x → u] t” is equal to t since x is fresh for t.1 Second,

the lemma subst body is a corrolary of subst lc (using subst open var). Finally,

the lemma open lc can be deduced from subst intro and subst lc: to prove tu

locally closed, one first rewrite this term as [x→ u] (tx) and then invoke the fact that

substitution preserves local closure.

3.9 Summary

The infrastructure associated with the locally nameless representation can be set up

as follows:

1. Define the syntax in locally nameless style, that is, with distinct constructors for

bound and free variables, and with nameless abstractions.

2. Define the opening and the variable closing operations. Derive the definition of

variable opening and of β-reduction from the definition of opening.

3. Define the free variables function and the substitution function. Define the local

closure predicate and its auxiliary “body” predicate.

4. State and prove the properties of the operations on terms that are needed in the

development to be carried out.

4 Formal definitions in locally nameless style

In this section, we explain and illustrate how to formally state inductive definitions on

λ-terms in the locally nameless representation. Starting from a definition in the named

representation, three steps are involved for reaching a correct and practical locally

1 Proving subst intro from subst open requires an assumption about the local closure of
the term being substituted in, although the lemma subst intro technically holds even without
this side condition.
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nameless definition. The first step is to replace named abstractions with nameless

abstractions, and use variable opening to open bodies of abstractions. The second step

is to quantify properly the names introduced for variable opening. For this purpose,

we use a particular technique based on the cofinite quantification of names [Aydemir

et al., 2008]. Other quantifications are possible, but the cofinite quantification offers

key advantages from an engineering point of view. The details of the motivation for

this technique and the justification of its correctness are out of the scope of this paper.

This paper only contains a short introduction to the cofinite quantification technique.

The third and last step consists in adding a number of premises to inductive rules so

as to ensure that inductive judgments are restricted to locally closed terms.

4.1 Introduction of variable opening in inductive rules

Consider the standard the typing rule for abstraction in the simply-typed λ-calculus,

shown below on the left-hand side. To obtain the locally nameless version of that rule

we need to turn the named abstraction “λx. t” into a nameless abstraction “abs t” and

use an explicit variable opening operation to build the term tx, which describes the

body of that abstraction. We obtain the rule shown below on the right-hand side.

E, x : T1 ` t : T2

E ` λx. t : T1 → T2

typing-abs-
with-names

E, x : T1 ` tx : T2

E ` abs t : T1 → T2

typing-abs-
locally-nameless

The transformation from the named version to the locally nameless version of an

inductive rule is very systematic. In the next section (§5), we will see many examples

of such transformations.

4.2 Quantification of free variable names

The rule typing-abs-locally-nameless is not explicit about the freshness side-

conditions that the variable name x should satisfy. Since we use x to open the body t

of the abstraction, the name x should be fresh from t. Moreover, since we extend the

environment E with a binding for x, the name x should be fresh from the domain of E.

If we explicitly include the freshness condition x 6∈ fv(t)∪dom(E), we get the rule

typing-abs-existential, shown next. In this rule, the name x is existential quantified:

it suffices to exhibit a typing derivation of tx for one fresh name x in order to build a

typing derivation for “abs t”. However, we could also require that tx admits the type

T2 for any fresh name x. In this case, we obtain the rule typing-abs-universal.

x 6∈ fv(t) ∪ dom(E) E, x : T1 ` tx : T2

E ` abs t : T1 → T2
typing-abs-existential

∀x 6∈ fv(t) ∪ dom(E), E, x : T1 ` tx : T2

E ` abs t : T1 → T2
typing-abs-universal

We advocate using a third rule, based on a cofinite quantification. The premise of

this rule, shown next, requires the existence of a finite set of names, called L, such that
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the term tx admits the type T2 for any name x that does not belong to the set L.

∀x 6∈ L, E, x : T1 ` tx : T2

E ` abs t : T1 → T2
typing-abs-cofinite

One advantage of the cofinitely-quantified typing rule is that we do not need to work

out what x should be fresh from. Indeed, if tx admits the type T2 for a cofinite number

of names, we can certainly find at least one fresh name such that tx admits the type T2.

The existential rule is very convenient as an introduction form: to build a typing

derivation for an abstraction, it suffices to type-check its body for one fresh name.

However, this rule is very weak as an elimination form: given the assumption that an

abstraction is well-typed, we only learn that its body is well-typed for one particular

fresh name. On the contrary, the universal rule is very convenient as an elimination

form: if we have a well-typed abstraction abs t, we can immediately obtain the knowl-

edge that tx is well-typed for any fresh name x. Yet, the universal rule is hard to use

as an introduction rule: it requires us to prove that tx for every possible fresh name x.

The cofinite rule is a compromise between the existential rule and the cofinite rule.

As an elimination form, the cofinite rule is nearly as strong as the universal rule: it

gives us knowledge that tx is well-typed for infinitely many names. As an introduction

form, the cofinite rule is not as bad as the universal rule. The cofinite quantification

gives us some slack, in the sense that we are able to exclude from the quantification an

arbitrary finite set of names. We will give in §6 examples where the ability to exclude

particular names is crucial.

4.3 Introduction lemma

While the cofinite rule is much better than the universal rule as an introduction form,

it is not quite as powerful as the existential rule. Indeed, the cofinite rule still requires

us to establish a result for infinitely many names before we can apply it. There are

cases where the cofinite rule is not good enough as an introduction form in the sense

that we are only able to build a proof of the premise for one fresh name, and not for

infinitely many names. (An example will be given in §6.7.)

In such situation, we need to resort to an introduction lemma, which simply states

that the existential rule is admissible. For the typing judgment, the introduction lemma

states that it suffices to show that tx is well-typed for one fresh name x in order to

deduce that abs t is well-typed.

typing-abs-intro:

{
x 6∈ fv(t) ∪ dom(E)

E, x : T1 ` tx : T2
⇒ E ` abs t : T1 → T2

The proof of this introduction lemma is based on a renaming lemma. The renaming

lemma states that if tx is well-typed for one fresh name x then ty is also well-typed for

any other fresh name y. Intuitively, renaming lemmas capture the idea that the choice

of names for free variable is irrelevant as long as the names are sufficiently fresh.

typing rename:


E, x : T1 ` tx : T2
x 6∈ fv(t) ∪ dom(E)

y 6∈ fv(t) ∪ dom(E)

⇒ E, y : T1 ` ty : T2

The proof of an introduction lemma and of a renaming lemma will be given in §6.6.
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4.4 Induction principle

When performing an induction over the an inductively-defined judgment involving

cofinite quantification, the induction hypothesis provided in the abstraction case is

quantified cofinitely. For example, consider the induction principle associated with the

local closure judgment.

induction principle for terms:

∀ t,


∀x, P (fvarx)

∀ t1 t2, P (t1) ⇒ P (t2) ⇒ P (app t1 t2)

∀L, (∀x 6∈ L, P (tx)) ⇒ P (abs t)

⇒ (∀ t, lc t ⇒ P (t))

When conducting a proof by induction, in the abstraction case we are given a finite

set of names L and we are given an hypothesis about tx for any x not in L. The

induction hypothesis is very strong: it states that P (tx) holds for all cofinitely-many

names x. In practice, the form of elimination associated with a cofinitely-quantified

inductive rule appears to always be sufficiently strong, in the sense that there is no

need to resort to the induction principle associated with the corresponding universally-

quantified inductive rule.

4.5 Restriction to locally closed terms

In §3.4, we explained that all judgments on terms need to be restricted to locally closed

terms. In this section, we show how this restriction can be implemented through the

addition of extra premises in inductive rules. We start by illustrating this mechanism

on an example, and then state a general construction rule.

Consider the definition of full β-reduction on λ-terms, written t −→ t′. It involves

four rules: one rule for contracting a head β-redex, plus three rules for reducing under

all possible evaluation contexts.

body t lcu

app (abs t)u −→ tu
beta-reduce

t1 −→ t′1 lc t2

app t1 t2 −→ app t′1 t2
beta-app-1

lc t1 t2 −→ t′2

app t1 t2 −→ app t1 t
′
2

beta-app-2
∀x 6∈ L, tx −→ t′

x

abs t −→ abs t′
beta-abs

These rules include premises for ensuring that whenever the proposition t −→ t′

holds, both t and t′ are locally closed. For instance, the rule beta-reduce includes

two such premises: one premise for ensuring that the argument u of the application

is a locally closed term, written “lcu”, and another premise for ensuring that the

abstraction involved is also locally closed, written “body t”. For the latter, we could

have written “lc (abs t)”, but the equivalent proposition “body t” is both lighter and

handier from a proof engineering point-of-view.

Not all terms involved in inductive definitions require a specific premise. For in-

stance, the rule beta-app-1 does not require a premise stating the local closure of t1.

Indeed, the premise describing the reduction of this term, namely t1 −→ t′1, suffices to

guarantee that t1 is locally closed. Sometimes, no extra premise is needed at all, as it

is the case for example in the rule beta-abs.



17

We can formally state and prove that whenever t reduces to t′, both t and t′ are

locally closed. This is the matter of the following regularity lemma, whose proof is

straightforward by induction on the definition of the β-reduction relation.

beta regular: t −→ t′ ⇒ lc t ∧ lc t′

In general, given an inductive rule, a local closure hypothesis is required for each

meta-variable describing a term that appears in the conclusion of the rule but not in

any premise able to guarantee the local closure of this meta-variable. In most cases, as

soon as the meta-variable is mentioned in at least one premise, it does not require an

explicit local closure hypothesis.

Furthermore, one needs to ensure that all data-structures containing locally name-

less terms do enforce local closure on these terms. For example, consider the formal-

ization of the semantics of an imperative language with a store mapping locations to

terms. In such a development, any time a store meta-variable is involved, one must

be able to prove that this store contains only locally closed terms. A similar need oc-

curs when formalizing languages whose types contain binders: typing contexts must be

restricted to contain only types with locally closed representations (see, e.g., §5.4).

Fortunately, in practice, the number of extra premises needed for ensuring regularity

generally remains quite small. Moreover, one can usually set up proof automation

so that all the corresponding side-conditions can be discharged automatically when

applying an inductive rule [Charguéraud, 2009]. Thus, the overall overhead associated

with the need to enforce local closure throughout formalizations appears to be fairly

reasonable in practice.

5 Examples of definitions in locally nameless style

We now present a series of examples of inductive definition in locally nameless style

with cofinite quantification. The first purpose is to illustrate further the use of cofinite

quantification as well as the addition of local closure premises. The second purpose

is to define the judgments involved in the next section, where we focus on formal

reasoning on locally nameless definitions. We consider the following examples: call-by-

value β-reduction, parallel reduction, reflexive-transitive closure of β-reduction, big-

step reduction, typing judgment in simply-typed λ-calculus, and typing and subtyping

judgments in System F<: .2

5.1 Small-step reductions on λ-terms

Our first example consists in the definition of call-by-value reduction on λ-terms. First,

we define a predicate “value” in order to characterize values. In the pure λ-calculus, only

locally closed abstraction are values, as stated by the rule value-abs. The definition

of the call-by-value reduction predicate, written t −→cbv t′, is defined by three rules:

one rule to β-reduce the application of an abstraction to a value, one rule to reduce

2 This paper does not describe the formalization of languages featuring mutable stores or
exceptions, as these features are of limited interest with respect to binding issues. Details on
the representation of such features can be found in the formal developments that the author
has carried out [Charguéraud, 2009].
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the right-hand side of an application, and one rule to reduce the left-hand side of an

application when the right-hand side has already reduced to a value.

body t

value (abs t)
value-abs

body t value u

app (abs t)u −→cbv tu
cbv-reduce

t1 −→cbv t′1 lc t2

app t1 t2 −→cbv app t′1 t2
cbv-app-1

value t1 t2 −→cbv t′2

app t1 t2 −→cbv app t1 t
′
2

cbv-app-2

Observe that the rule cbv-app-2 does not require any local closure premise because

the property “lc t1” is implied by the assumption that t1 is a value.

Another interesting variant of β-reduction is the parallel reduction predicate, which

we will use to prove confluence of β-reduction. With the parallel reduction judgment,

written t � t′, both branches of an application can be reduced in parallel. Moreover,

both the abstraction and the argument of a β-redex can be reduced before the redex

is contracted. The formal rules are shown next. Notice that no local closure premise is

needed to ensure the regularity of the parallel reduction relation.

fvarx � fvarx
para-var

(
∀x 6∈ L, t1

x � t′1
x)

t2 � t′2

app (abs t1) t2 � t′1
t′2

para-reduce

∀x 6∈ L, tx � t′
x

abs t � abs t′
para-abs

t1 � t′1 t2 � t′2

app t1 t2 � app t′1 t
′
2

para-app

5.2 Multiple-step reductions on λ-terms

The reflexive-transitive closure of the β-reduction relation, written t −→∗ t′, can be

defined using two rules: one rule for the empty reduction sequence, and one rule de-

composing a non-empty reduction sequence by isolating its first reduction step. As any

other relation on terms, we need to restrict −→∗ to locally closed terms. To that end,

we include a local closure premise in the rule beta-star-refl, as shown next.

lc t

t −→∗ t
beta-star-refl

t −→ t′ t′ −→∗ t′′

t −→∗ t′′
beta-star-head

In the particular case of reasoning on the output of terminating programs in a call-

by-value setting, a big-step semantics can be used instead of a small-step semantics.

The following judgment, written “t ⇓ v”, describes the fact that the term t reduces in

big-step towards the value v. It is defined using two inductive rules. The first one states

that a value reduces to itself, where the definition of a value is the same as the one

used earlier on (see §5.1). The second rule describes the reduction of an application.

value v

v ⇓ v
big-step-val

t1 ⇓ abs t3 t2 ⇓ v2 t3
v2 ⇓ v3

app t1 t2 ⇓ v3
big-step-app
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5.3 Simply-typed λ-calculus

In order to provide a complete definition of the typing judgment for the simply-typed

λ-calculus, we first need to give a formal definition of simple types and of typing

environments. Simple types are built from atomic type and arrow types.

T := A | T1 → T2

Typing environments, also called typing contexts, associate types with atoms. Envi-

ronments are constructed from the empty environment, written “∅”, and by extending

an existing environment with a given binding, written “E, x : T”. Technically, en-

vironments are implemented using association lists, of type list (atom ∗ T ). So, ∅ is

represented as nil and “E, x : T” is represented as “(x, T ) :: E”. The domain of an

environment E, written “dom(E)”, corresponds to the set of names that are bound by

that environment. It is computed as the set of keys of the corresponding association list.

We require environments to bind names at most once. While this restriction is not

strictly necessary for the simply-typed λ-calculus, it is needed for reasoning on more

involved systems. For the sake of uniformity, the library for defining environments that

we have developed requires environments to bind any given name at most once. The

following “ok” predicate captures this property, by enforcing that bindings do not reuse

names that are already in the domain of the environment they are appended to.

ok∅
ok-nil

okE x 6∈ dom(E)

ok (E, x : T )
ok-cons

The formal rules defining the typing judgment for the simply-typed λ-calculus in

locally nameless style can be stated as follows.

okE (x : T ) ∈ E
E ` fvarx : T

typing-var
E ` t1 : T1 → T2 E ` t2 : T1

E ` app t1 t2 : T2
typing-app

∀x 6∈ L, E, x : T1 ` tx : T2

E ` abs t : T1 → T2
typing-abs

The regularity lemma associated with this judgment states that whenever a typing

relation “E ` t : T” holds, E is a well-formed environment and t is a locally closed

term. The proof of this lemma is straightforward by induction.

typing regular: E ` t : T ⇒ okE ∧ lc t

5.4 System F<:

This example focuses on System F<: . This system is particularly interesting with

respect to binding issues, as it mixes two kinds of variables: type variables and term

variables.3 The conventional presentation of the grammars of types, terms and environ-

ments is as follows. Types are made of type variables, the maximum type “Top”, arrow

3 The formalization of System F<: and a proof of its soundness are the heart of the
POPLMark challenge [Aydemir et al., 2005], which was designed as a good stress test for
comparing binding technologies.



20

types and universal types with bounded quantification. Terms are made of term vari-

ables, term abstractions, term applications, type abstractions and type applications.

Environments are made of the empty environment, environments extended with term

variable bindings and environments extended with type variable bindings.

T := X | Top | T → T | ∀X<:T. T

t := x | λx:T. t | t t | ΛX<:T. T | t [T ]

E := ∅ | E, x:T | E, X<:T

In order to describe the corresponding grammar in locally nameless syntax, we need

to introduce distinct constructors for bound variables and for free variables. Thereafter,

four constructors for variables are involved: one for bound type variables (typ bvar),

one for free type variables (typ fvar), one for bound term variables (trm bvar) and one

for free term variables (trm fvar). It is not needed that the atoms used to represent

free type variables be different from the atoms used to represent free term variables, as

free term variable names can never end up being mixed with free type variable names.

Note that universal types, abstractions and type abstractions become nameless.

T := typ bvar i | typ fvar x | Top | T → T | ∀<:T. T

t := trm bvar i | trm fvar X | λ:T. t | t t | Λ<:T. T | t [T ]

For the sake of presentation of typing and subtyping rules, we introduce the fol-

lowing convention. Whenever we write a lowercase name, it stands for the free term

variable with the corresponding name (e.g. “x” stands for “trm fvar x”), and whenever

we write an uppercase name, it stands for the free type variable with the corresponding

name (e.g. “X” stands for “typ fvar X”). Bound variables never appear in typing rules,

so there is no need to introduce any particular notation for them.

Two local closure predicates are defined. The first one characterizes locally closed

types. It is written “typ lc T”. The second one characterizes locally closed terms. It

is written “trm lc t”. Three variable opening operations are required. The first one

is used to open universal types, and replaces bound type variables with free type

variables inside types. The second one is used to open type abstractions, and replaces

bound type variables with free type variables inside terms. The third one is used to

open term abstractions, and replaces bound term variables with free term variables

insider terms. Similarly, three substitutions are involved: one for substituting types

in types, one for substituting types in terms and one for substituting terms in terms.

Also, three functions for gathering free variables are defined: one to gather free type

variables in types, one to gather free type variables in terms and one for gathering free

term variables in terms. Note that variable closing is not needed for establishing the

soundness of System F<: .

To formalize the definition of environments, a natural approach would be to in-

troduce an inductive type with three constructors: one for empty environments, one

for extensions a with term variable binding and one for extensions with a type vari-

ables binding. However, this would prevent us from reusing a standard association lists

library, thereby requiring us to duplicate many definitions. Thus, we use a slightly

different approach that allows us to define System F<: environments in terms of as-

sociation lists. First, we define a binding item, written B, as either a term variable

binding or a type variable binding. Both are built upon a type.

B := (: T ) | (<: T )
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typing-var
okE (x:T ) ∈ E

E ` x : T

typing-sub
E ` t : S E ` S <: T

E ` t : T

typing-abs
∀x 6∈ L, E, x:T1 ` tx : T2

E ` (λ:T1. t) : (T1 → T2)

typing-app
E ` t1 : T1 → T2 E ` t2 : T1

E ` (t1 t2) : T2

typing-tabs
∀X 6∈ L, E, X<:T1 ` tX : T2

E ` (Λ<:T1. t) : (∀<:T1. T2)

typing-tapp
E ` t1 : (∀<:T1. T2) E ` T <: T1

E ` (t1 [T2]) : (T2
T )

Fig. 1 Typing rules for System F<:

The environments that we use are lists of pairs that associate binding items with

atoms. An atom bound in a given environment is the name of a free term variable if it

is associated with an item of the form (: T ), and is the name of a free type variable if it

is associated with an item of the form (<: T ). As variables are bound at most once in a

given environment, a free type variable and a free term variable can never be confused.

For the sake of presentation, we let “E, x:T” be a notation for “(x, (: T )) :: E” and

“E, X<:T” be a notation for “(X, (<: T )) :: E”.

We need to restrict environments to well-formed ones. An environment is well-

formed if all the types that it contains are well-defined at their position in the envi-

ronment. A type T is well-defined in a context E, written “typ wf E T”, if T is locally

closed and has its free variables bound in the environment E. In the corresponding for-

mal definition, shown next, typ lc is the local closure predicate for types, and typ typ fv

is the function that computes the set of free types variables occurring in a given type.4

typ wf E T ≡ typ lc T ∧ typ typ fv T ⊆ dom(E)

The predicate “ok ” captures well-formed typing environments from System F<: .

ok∅
ok-nil

okE x 6∈ dom(E) typ wf E T

ok (E, x:T )
ok-cons-typ

okE x 6∈ dom(E) typ wf E T

ok (E, X<:T )
ok-cons-sub

The formal presentation of typing rules for System F<: in locally nameless style are

shown in Figure 1. The subtyping rules appear in Figure 2. The three variable opening

operations are used in these rules. In the rule typing-abs, a term t is opened with

respect to a term variable x. In the rule typing-tabs, a term t is opened with respect

to a type variable X. In the rule sub-all, a type T is opened with respect to a type

variable X. The opening operation is also used for typing type applications in the rule

typing-tapp, for reducing a universal type onto a particular argument. Note that only

a few well-formedness premises are needed.

The regularity lemmas associated with the typing and the subtyping judgments are

stated below. The first one states that if t admits the type T in the environment E,

4 The proposition “typ wf E T” can also be defined inductively, following the structure of T .
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sub-refl-var
okE typ wf E X

E ` X <: X

sub-trans-var
(X<:S) ∈ E E ` S <: T

E ` X <: T

sub-arrow
E ` T1 <: S1 E ` S2 <: T2

E ` S1 → S2 <: T1 → T2

sub-top
okE typ wf E T

E ` T <: Top

sub-all
E ` T1 <: S1 (∀X 6∈ L, E, X<:T1 ` S2

X <: T2
X)

E ` (∀<:S1. S2) <: (∀<:T1. T2)

Fig. 2 Subtyping rules for System F<:

then E must be well-formed, T must be well-defined in E, and t must be locally closed.

The second one states that if S is a subtype of T in the environment E, then E must

be well-formed, and S and T must be well-defined in E.

typing-regular: E ` t : T ⇒ okE ∧ trm lc t ∧ typ wf E T

subtyping-regular: E ` S <: T ⇒ okE ∧ typ wf E S ∧ typ wf E T

Remark: System F involves two syntactic categories (terms and types), leading to

the need for three substitution functions. More generally, the number of substitution

functions required grows quadratically with the number of syntactic categories. A tech-

nique called collapsed syntax [Aydemir et al., 2009] can be employed for reducing the

number of substitution functions involved. It consists in collapsing the various syntactic

categories into one single category. For example, System F entities can be represented

using a single data type that includes both term constructors and type constructors.

Note that the number of local closure predicates and of regularity lemmas is not re-

duced through the use of collapsed syntax.

5.5 Definition of the CPS transformation

Our last example is concerned with the formal definition of a CPS transformation.

While previous examples involved only inductive definitions, this example involves the

definition of a recursive function on locally nameless terms. One central difficulty here is

to find out where variable opening and variable closing operations need to be computed.

The textbook definition of the CPS transformation [Plotkin, 1975], written J·K, is:

JxK ≡ λk. k x

Jλx. tK ≡ λk. k (λx. JtK)
Jt1 t2K ≡ λk. Jt1K (λx. Jt2K (λy. x y k))

Translating this definition in locally nameless style takes three steps: first, opening

abstractions with fresh names before recursive calls are made on their body; second,

closing with respect to the corresponding names the result of those recursive calls; and

third, replacing the abstractions that are built for describing continuations with their

locally nameless equivalent. The result is shown in Figure 3.5 The interesting case is

the abstraction case: in order to transform an abstraction “abs t1”, we pick a name x

fresh from t1, we make a recursive call on the description of its body t1
x, and then we

close the result with respect to variable x and build the result “abs (\xJt1xK)”.

5 To implement the recursive function cps in a logic of total functions, one needs to argue
that the size of the argument of the function is decreasing at each recursive call. Moreover,
when the argument is a bound variable, the function needs to return an arbitrary term.
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let rec cps t =
match twith
| fvarx 7→

abs (app (bvar 0) (fvarx))
| abs t1 7→

letx = fresh (fv(t1)) in
let t′1 = \x(cps (t1x)) in
abs (app (bvar 0) (abs t′1))
| app t1 t2 7→

letK = abs (app (app (bvar 1) (bvar 0)) (bvar 2)) in
abs (app (cps t1) (abs (app (cps t2)K)))
| bvar i 7→ undefined

Fig. 3 A first implementation of the CPS transformation

let rec cps t =
match twith
| fvarx 7→

let k = fresh (fv(t)) in
Abs k (app (fvar k) (fvarx))
| abs t1 7→

let k, x = fresh2 (fv(t)) in
let t′1 = \x(cps (t1x)) in
Abs k (app (fvar k) (abs t′1))
| app t1 t2 7→

let k, k1, k2 = fresh3 (fv(t)) in
letK = Abs k2 (app (app (fvar k1) (fvar k2)) (fvar k)) in
Abs k (app (cps t1) (Abs k1 (app (cps t2)K)))
| bvar i 7→ undefined

Fig. 4 A second implementation of the CPS transformation, without de Bruijn indices

The definition from Figure 3 is correct and usable. Yet, one could argue that the

definition is only partly satisfactory because it involves explicit de Bruijn indices for

describing the bound variables introduced by the CPS transformation. Fortunately,

there exists an alternative way of writing an equivalent function using only names.

The idea is to use a variable closing operation applied to a fresh name. For example,

to describe the term “λk. (k x)”, we can write “abs (\k(app (fvar k) (fvarx)))” instead

of “abs (app (bvar 0) (fvarx))”. We can now rewrite the CPS transformation in a more

readable style, that closely resemble that of FreshML [Shinwell et al., 2003]. The result-

ing CPS function, shown in Figure 4, is presented using two pieces of notation. First,

following Gordon [1993], we rely on an intermediate notation for building abstraction

and write “Absx t” instead of “abs (\xt)”. Second, we use the notation freshn to pick a

tuple of n fresh names at once. Although the function from Figure 4 is slightly longer

than that of Figure 3, it looks much closer to the textbook presentation.

Remark: the locally nameless implementations of the CPS transformation presented

above are not algorithmically efficient: they run in quadratic time while the CPS trans-

formation can be implemented in linear time. It is possible to improve the runtime

complexity of the CPS function by delaying variable opening and anticipating variable

closing, using contexts that are passed as extra arguments in recursive calls. Yet, for

the sole purpose of reasoning on formal definitions, runtime efficiency is not an issue.
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6 Formal reasoning in locally nameless style

In this section, we describe how to carry out formal proofs on judgments defined in

locally nameless style, focusing on the parts of the reasoning that are specific to that

representation. First, we consider a proof of soundness for the call-by-value simply-

typed λ-calculus (λ→). We describe proofs that weakening, substitution and reduction

preserve typing, as well as a proof of the progress property. Second, we prove transitivity

of subtyping in System F<: . This proof illustrates how to combine information coming

from two derivations. Then, we focus on a proof of confluence for β-reduction. Finally,

we explain how to prove that results of the CPS transformation do not depend upon

the names chosen to open abstractions.

6.1 Weakening lemma for λ→

The weakening lemma states that if a term is well-typed in a given environment E

then it admits the same type in an extension (E,F ) of that context. This result, whose

statement appears below, is used in the proof of the substitution lemma. Observe that

the target environment (E,F ) is required to be well-formed.

typing weaken: E ` t : T ∧ ok (E,F ) ⇒ E,F ` t : T

The statement of this lemma needs to be strengthened before an induction can be

carried out, by extending the contexts involved with an extra component.6 The new

statement asserts that typing is preserved when arbitrary bindings are inserted in the

middle of the initial environment, provided those bindings do not reuse names that are

already bound.

typing weaken’: E,G ` t : T ∧ ok (E,F,G) ⇒ E,F,G ` t : T

The proof goes by induction on the typing derivation. When t is a variable or an

application, the proof goes exactly as in a standard textbook presentation. In the case

where t is a free variable “fvarx”, we need to show that if x is bound to T in (E,G)

then x is also bound to T to (E,F,G), and this is true. In the case where t is an

application “app t1 t2”, we know that E,G ` t1 : T1 → T2 and that E,G ` t2 : T1.

By induction hypotheses applied to these two facts, we derive that the types of t1 and

t2 are preserved when extending the environment to (E,F,G). We can then apply the

typing rule for application to build a proof that the application “app t1 t2” admits the

type T2 in the extended environment (E,F,G).

The case where t is an abstraction “abs t1” is more interesting, as it slightly differs

from the proof carried out in the named representation. We know that (E,F,G) is well-

formed and our induction hypothesis states that there exists a finite set of names L

such that, for any x not in L, the proposition “ok (E,F,G, x : T1)” implies “E,F,G, x :

T1 ` tx : T2”. The goal to be proved is “E,F,G ` abs t1 : T”.

Thus, starting from a first instance of the rule typing-abs

∀x 6∈ L, E, G, x : T1 ` tx : T2

E,G ` abs t : T1 → T2
typing-abs

6 It is in fact technically possible to perform an induction directly on the initial statement,
but it would require to first prove an auxiliary lemma stating that bindings in the typing
context can be permuted, involving overall more work than the approach followed here.
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and assuming that (E,F,G) does not contain duplicated bindings, we aim at building

another instance of the rule typing-abs of the form:

∀x 6∈ L′, E, F, G, x : T1 ` tx : T2

E,F,G ` abs t : T1 → T2
typing-abs

To that end, we need to find a finite set of names L′ such that, for any x not in L′, the

proposition “E,F,G, x : T1 ` tx : T2” holds. we instantiate L′ as the union of L and

the domain of (E,F,G). On the one hand, by including in L′ the names occurring in

L, we acquire direct knowledge about the typing of tx, from the induction hypothesis.

More precisely, we are able to show that the proposition “E,F,G, x : T1 ` tx : T2”

holds.7 On the other hand, by including in L′ the set of names bound in (E,F,G), we

are able to build the environment “E, F, G, x : T1” without breaking the invariant

that names should be bound at most once in the context. More precisely, we are able

to prove “ok (E,F,G, x : T1)”, using the fact that (E,F,G) is well-formed and that x

is fresh for the domain of (E,F,G).

Technically, it would be sufficient to instantiate L′ as the union of L and of the

domain of F , since the freshness of x from the domains of E and G can be deduced

from the fact that the proposition “E, G, x : T1 ` tx : T2” holds. In other words,

the set L can be proved to already include the domains of both E and G. Yet, as we

are not restricted in the number of names that we include in L′, we are not at all

interested in minimizing the size of the set L′. In practice, we do exactly the opposite:

we include in L′ as many names as we can, so as to get the strongest possible freshness

hypothesis on the name x.

6.2 Substitution lemma for λ→

The substitution lemma states that the typing of a term t is preserved when substituting

a free variable named z of type U with a term u of the same type U . This lemma plays

a central role in the proof that β-reduction preserves typing.

typing subst: E, z : U ` t : T ∧ E ` u : U ⇒ E ` [z → u] t : T

The skeleton of proof is quite similar to that of the weakening lemma. The main novelty

is the need to permute a variable opening operation with a substitution in the proof case

for abstractions. The statement first needs to be generalized with a context extension

F before being proved by induction on the typing derivation of the term t.

typing subst’: E, z : U,F ` t : T ∧ E ` u : U ⇒ E,F ` [z → u] t : T

The variable case and the application case are standard. In the particular case where

t is exactly the free variable named z, i.e. the one being substituted, we know that z is

bound to T in the context, and the goal is to show “E,F ` u : T”. Because names are

bound at most once in the context, we deduce that T must be equal to U . The remaining

proof obligation “E,F ` u : U” is deduced from the hypothesis “E ` u : U” by

application of the weakening lemma. The side-condition from the weakening lemma,

7 We have implicitly used the fact that environments are associative. Indeed, the conclusion
of the induction hypothesis mentions a context of the form “((E,F ), (G, x : T ))” while the goal
mentions a context of the form “(((E,F ), G), x : T )”. In a formal proof, this equality needs to
be justified through an explicit rewriting step.
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“ok (E,F )”, can be deduced from the fact that “ok (E, z : U,F )”. The latter is a

consequence of the regularity of the typing judgment “E, z : U,F ` t : T”.

The interesting case with respect to the locally nameless representation occurs

when t is an abstraction “abs t1”. The induction hypothesis states that there exists a

set L such that, for any x not in L, the proposition “E,F, x : T1 ` [z → u] (tx) : T2”

holds. The goal is “E,F ` [z → u] (abs t1) : T”, which, by definition of substitution

(see §3.5), is equivalent to “E,F ` abs ([z → u] t1) : T”. To prove it, we apply

the typing rule for abstraction, and need to find a set L′ such that, for any x not

in L′, the proposition “E,F, x : T1 ` ([z → u] t)x : T2” holds. This latter proposition

corresponds to the induction hypothesis if we can derive the following equality:

[z → u] (tx) = ([z → u] t)x

This equality is exactly the matter of the lemma subst open var (see §3.5). To con-

clude, we need to verify the two side-conditions associated with that lemma. First, u

must be locally closed. This fact can be derived from the regularity of the typing hy-

pothesis on u. Second, x must be distinct from z. To be able to show x and z distinct,

it suffices to instantiate L′ as L ∪ {z}. Indeed, if x is not in L′, and if L′ includes z,

then x is provably distinct from z.

Including the name z in the set L′ is a way to ensure that the name x, which is

used to describe the variable bound by the abstraction “abs t”, is distinct from the

free variable z. This corresponds to the intuition that, when working with the named

representation, a bound variable can always be assumed to be fresh from any known

free variable.

6.3 Preservation lemma for λ→

The preservation lemma states that if a term t admits the type T and reduces to a

term t′, then t′ also admits the same type T .

preservation: E ` t : T ∧ t −→cbv t′ ⇒ E ` t′ : T

This lemma is proved by induction on the typing derivation of t, followed in each case

with a case analysis on the reduction hypothesis. If t is a variable or an abstraction,

then it cannot take a reduction step. If t is an application “app t1 t2”, three sub-cases

are possible, depending on the reduction rule being applied. If the reduction occurs

inside t1 or inside t2, we conclude using the induction hypotheses.

Otherwise, the reduction is the contraction of a β-redex. In this last case, t must

be an application of the form “app (abs t3) v2” and t′ is equal to (t3
v2). The typing

hypothesis ensures the existence of a type T ′ such that “E ` abs t3 : T ′ → T” and

“E ` v2 : T ′”. By inversion on the typing hypothesis for “abs t3”, there must exists a

set L such that, for any x not in the set L, the proposition “E, x : T ′ ` t3x : T” holds.

To summarize, the hypotheses available are the premises of the typing derivation for t:

∀x 6∈ L, E, x : T ′ ` t3x : T

E ` abs t3 : T ′ → T
typing-abs

E ` v2 : T ′

E ` app (abs t3) v2 : T
typing-app

The goal is to prove that (t3
v2) admits the type T . In order to invoke the substi-

tution lemma and conclude, we first need to introduce a substitution. So, we pick an
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arbitrary name x fresh from t and L, and exploit the lemma subst intro to change

t3
v2 into [x → v2] (t3

x). (Note that we here use the fact that x is fresh from t.) We

then conclude by invoking the substitution lemma, using the typing assumption for v2
as well as the typing hypothesis for t3

x. (The latter is available because we have picked

x outside of L.) To summarize, we have built a typing derivation for t′ as follows.

E, x : T ′ ` t3x : T E ` v2 : T ′

E ` [x→ v2] (t3
x) : T

typing-subst

E ` t3v2 : T
subst-intro

The key idea from this proof is to reason on the result of a β-reduction (t3
v2) by

introducing a substitution on an arbitrary fresh name x, that is, going through the

form [x → v2] (t3
x). By comparison, when working with the named representation,

there is no need to introduce a substitution explicitly, because β-reduction is already

defined in terms of a substitution.

6.4 Progress lemma for λ→

The progress lemma states that if a term t is well-typed in the empty environment,

then either t is a value or t can take a reduction step towards some term t′.

progress: ∅ ` t : T ⇒ value t ∨ ∃ t′, t −→cbv t′

There is nothing in this proof specific to the locally nameless representation, except

the witness to be provided in the case where a β-reduction can be performed.

The proof goes by induction on the typing derivation. First, as the typing envi-

ronment is empty, t cannot be a variable. Second, if t is an abstraction, then t is a

value. Otherwise, t is an application “app t1 t2”. If t1 is not a value, then, by induction

hypothesis, it can be reduced. Otherwise, it t2 is not a value, then, by induction hy-

pothesis, it can be reduced. Otherwise, both t1 and t2 are values. Since t1 has an arrow

type, it must be an abstraction, of the form “abs t3”. In this case, the β-reduction rule

applies, and the application “app (abs t3) t2” reduces to (t3
t2).

6.5 Transitivity of subtyping in System F<:

The proof of soundness of System F<: involves a key intermediate lemma, whose pur-

pose is to establish the transitivity of the subtyping relation.

E ` S <: T ∧ E ` T <: U ⇒ E ` S <: U

The case where S, T and U are universal types is particularly interesting with respect

to the treatment of variable bindings, because we need to relate variables coming from

two different derivations.

The proof is conducted by induction on the structure of T , that is, following the

induction principle associated with the local closure of T . We focus on the case where

S, T and U are universal types. The corresponding proof obligation appears next. The

first pair of hypotheses come from the subtyping relation stating that S is smaller than

T . The second pair come from the fact that T is smaller than U . The goal is to show
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that S is smaller than U . Notice that each of the two cofinitely-quantified hypotheses

come with its own set of excluded names, called L and L′.{
E ` T1 <: S1
∀X 6∈ L, E, X<:T1 ` (S2

X) <: (T2
X)

∧
{
E ` U1 <: T1
∀X 6∈ L′, E, X<:U1 ` (T2

X) <: (U2
X)

⇒ ∃L′′.
{
E ` U1 <: S1
∀X 6∈ L′′, E, X<:U1 ` (S2

X) <: (U2
X)

The first part of the conclusion, which asserts that U1 smaller than S1, is an

immediate consequence of the induction hypothesis, since U1 is smaller than T1 and

T1 is smaller than S1. For the second part of the conclusion, we instantiate L′′ as the

union of L and L′. Now, let X be an arbitrary atom not in the set L′′. On the one

hand, since X is not in L, we know that (S2
X) is smaller than (T2

X) in the context

“E, X<:T1”. By invoking a narrowing lemma (not detailed here), we can show that

the same subtyping relation actually holds in the context “E, X<:U1”. On the other

hand, since X is not in L′, (T2
X) is smaller than (U2

X) in the context “E, X<:U1”. By

induction hypothesis applied to those two results, we conclude that (S2
X) is smaller

than (U2
X) in the context “E, X<:U1”. This completes the proof.

In the above reasoning, we have used one name X to open three binders coming

from two different judgments. As each of the two judgments is quantified over its own

cofinite set, we need to pick X in the intersection of these two cofinite sets. The reason

why the cofinite quantification works here is because the intersection of two cofinite sets

always produces a cofinite set. In the proof, we have effectively built this intersection

by constructing L′′, the finite set of names to be excluded, as the union of L and L′.

6.6 Proof of an introduction lemma

We now describe the proof of an introduction lemma. We consider the cofinitely-

quantified inductive rule beta-abs, which explains how to reduce an abstraction.

∀x 6∈ L, tx −→ t′
x

abs t −→ abs t′
beta-abs

The corresponding introduction lemma, named beta-abs-intro, will be useful for our

next example (§6.7). It is stated as follows. Note that the freshness conditions on x are

necessary: the proposition would not hold if t or t′ could contain an occurrence of x.

beta-abs-intro: tx −→ t′
x ∧ x # t ∧ x # t′ ⇒ abs t −→ abs t′

Let us prove beta-abs-intro. The goal is to show that abs t reduces to abs t′. We

apply the cofinitely-quantified inductive rule beta-abs. We need to find a set L such

that, for any y not in L, the reduction ty −→ t′
y

holds. We instantiate L as the empty

set and consider an arbitrary name y. Using the lemma subst-intro, we introduce

a renaming operation from x to y. More precisely, we rewrite ty as [x → y] (tx) and

symmetrically we rewrite t′
y

as [x → y] (t′
x
). It remains to establish the following

implication:

tx −→ t′
x ⇒ [x→ y] (tx) −→ [x→ y] (t′

x
)
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This implication is an immediate consequence of the renaming lemma associated

with the β-reduction judgment:

beta-rename: u −→ v ⇒ [x→ y]u −→ [x→ y] v

This result can be easily established by induction on the hypothesis v −→ v′. Only

the case where v and v′ are abstractions requires some care. The induction hypothesis

asserts that [x → y] (uz) −→ [x → y] (vz) holds for any name z not in some set L.

We need to establish that ([x→ y]u)z −→ ([x→ y] v)z holds for all names z not in

some finite set L′. We instantiate L′ as the L ∪ {x} and conclude using the lemma

subst open var to permute the substitutions with the variable opening operations.

The renaming lemma beta-rename is in fact a particular case of a substitution

lemma for the β-reduction relation. This substitution lemma, called β-subst-out (its

statement appears in §6.8) is needed anyway in order to establish properties of β-

reduction. In many situations like here, we can save the need to perform an induction

for proving a renaming lemma by reusing a substitution lemma directly. Note that the

proof of a substitution lemma for a given judgment can generally be conducted without

help of the renaming lemma associated with that judgment.

6.7 Interaction of binders with the β∗-reduction

The following lemma states that if a body tx reduces in several steps towards another

body t′
x
, then the abstraction “abs t” reduces to “abs t′” in several steps.

β∗-abs: (∀x 6∈ L, tx −→∗ t′x) ⇒ abs t −→∗ abs t′

This lemma is involved in particular to establish confluence of β-reduction (see §6.8).

We have chosen to state the lemma using a cofinite quantification in order to obtain a

statement that looks similar to the rule beta-abs and that does not need to include

explicit freshness side-conditions.

That said, in order to prove the lemma, we need to go through an existentially-

quantified version of the lemma. Indeed, in order to perform an induction on the

reduction sequence starting on tx, we must settle on one particular name x before

performing the induction. Thus, we need to prove the following intermediate lemma.

β∗-abs-intro: tx −→∗ t′x ∧ x # t, t′ ⇒ abs t −→∗ abs t′

To prove this lemma, we first reformulate it as follows:

u −→∗ u′ ⇒ ∀ t, t′, u = tx ∧ u′ = t′
x ∧ x # t, t′ ⇒ abs t −→∗ abs t′

We can then perform the induction on the reduction sequence u −→∗ u′. There are

two cases. In the first case, suppose that the reduction from u is the empty sequence.

In this case, u′ is equal to u. In order to conclude, we must show that t is equal to t′.
This is an immediate consequence of the injectivity of variable opening (see §3.2). In

the second case, suppose there exists a term u′′ such that u −→ u′′ and u′′ −→∗ u′. In

other to apply the induction hypothesis on the latter fact, we need to find a term t′′

such that u′′ = t′′
x
. To that end, we define t′′ as \xu′′. It remains to show that “abs t”

reduces to “abs t′”. We know that tx reduces to t′
x
, but only for one particular name

x known to be fresh from t and t′. Thus, we cannot invoke the cofinitely-quantified
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inductive rule beta-abs. Instead, we conclude with the corresponding introduction

lemma beta-abs-intro.

This proof illustrates the fact that a cofinitely-quantified rule is sometimes too

weak as an introduction form. In such cases, the associated introduction lemma needs

to be explicitly invoked. The above proof also shows a situation where reasoning on

the injectivity of variable opening is required. Both these issues do not appear on con-

ventional paper-and-pencil proofs, where abstractions are implicitly α-renamed during

inductions, so as to be able to assume sufficient freshness. These issues do not appear

either in a proof carried out in pure de Bruijn style, where no name is ever involved in

the reasoning. The lemma β∗-abs is one of the few examples of a proof which is signif-

icantly simpler with the pure de Bruijn representation than with the locally nameless

representation.

6.8 Confluence of β-reduction

Confluence of β-reduction is a fundamental result from the theory of pure λ-calculus.

β confluence: t −→∗ t1 ∧ t −→∗ t2 ⇒ ∃ t′, t1 −→∗ t′ ∧ t2 −→∗ t′

The purpose of this section is to describe the parts of the proofs that are specific to

the locally nameless representation of λ-terms.

There are several approaches to establishing confluence. We describe a direct syn-

tactic proof based on parallel reductions. This proof is divided in two parts. The first

part consists in establishing that the reflexive-transitive closure of β-reduction is equal

to the transitive closure of parallel reduction. The second part consists in proving that

parallel reduction satisfies the diamond property, which is a strong form of confluence.

para diamond: t � t1 ∧ t � t2 ⇒ ∃ t′, t1 � t′ ∧ t2 � t′

The only part which is really specific to the locally nameless representation lies

in the proof of an intermediate lemma used to establish the equivalence between β∗-
reduction and parallel reduction. This lemma states that if t1

x reduces to t2
x and u1

reduces to u2, then the opening t1
u1 reduces to the opening t2

u2 .

β∗ through: t1
x −→∗ t2x ∧ u1 −→∗ u2 ⇒ t1

u1 −→∗ t2u2 when x # t1, t2

To prove this result, we introduce two substitutions to decompose the two opening

operations, in a similar fashion as done in the proof of preservation (see §6.3). More

precisely, we introduce a fresh name x, and decompose t1
u1 as [x→ u1] (t1

x), and,

symmetrically, decompose t2
u2 as [x→ u2] (t2

x). The remaining result to be proved is

a form of substitution lemma for the relation β∗.

β∗ subst all: t −→∗ t′ ∧ u −→∗ u′ ⇒ [x→ u] t −→∗ [x→ u′] t′

The proof of this lemma goes by induction on the reduction sequence starting on t,

and involves two auxiliary lemmas, which are stated and proved next.

The first auxiliary lemma states that β-reduction is preserved through substitution

of a free variable with an arbitrary locally closed term.

β subst out: t −→ t′ ∧ lcu ⇒ [x→ u] t −→ [x→ u] t′
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Its proof goes by induction on the first hypothesis. All the cases are easy, except the case

where a β-redex is contracted. In this case, we need to show that [x→ u] (app (abs t1) t2)

reduces to [x → u] (t1
t2). By definition of substitution, the former term is equal to

“app (abs ([x→ u] t1)) ([x→ u] t2)”, and thus reduces towards ([x→ u] t1)([x→u] t2). It

remains to argue that this latter expression is equal to [x→ u] (t1
t2). This distributivity

property of substitution on opening is exactly the matter of the lemma subst open,

described in §3.7.

The second auxiliary lemma describes how β-reduction steps can be “plugged into”

a given λ-term through a substitution. More precisely, if u reduces to u′, then, given

a locally closed term t, the substitution of x with u in t produces a term that reduces

to the substitution of x with u′ in t.

β∗ subst in: u −→∗ u′ ∧ lc t ⇒ [x→ u] t −→∗ [x→ u′] t

The proof of this lemma goes by induction on the structure of t, i.e., by induction on the

proof of the local closure of t. If t is a variable, the result is immediate. Otherwise, we

need to show that the β∗-relation commutes with the application and the abstraction

constructors:

β∗-app-1: t1 −→∗ t′1 ∧ lc t2 ⇒ app t1 t2 −→∗ app t′1 t2
β∗-app-2: t2 −→∗ t′2 ∧ lc t1 ⇒ app t1 t2 −→∗ app t1 t

′
2

β∗-abs: (∀x 6∈ L, tx −→∗ t′x) ⇒ abs t −→∗ abs t′

The two first results are easy. The last one has been established earlier on, in §6.7.

A comparison between a confluence proof in de Bruijn style and the same proof in

locally nameless style shows that the two proofs have about the same size and have

relatively similar structures. The two main causes of divergence are the treatment

of abstraction cases on the one hand, and the fact that the de Bruijn presentation

involves shifting operations in many statements and proofs on the other hand. The

first cause leads a few auxiliary lemmas, such as β∗-abs, to require a slightly longer

proof in the locally nameless development. The second cause leads the pure de Bruijn

development to be further apart from a conventional presentation than the locally

nameless development.

6.9 Properties of the CPS transformation

The implementation of the CPS transformation on locally nameless terms presented in

§5.5 can be formally proved to preserve the semantics of the terms it transforms. The

purpose of this section is not to present the complete proof, but only to describe how

to establish that results of CPS transformations do not depend on the arbitrary names

being used to open abstractions. The need for reasoning on the irrelevance of local

variable names comes from the fact that CPS is defined as a function, which precludes

the use of a cofinite quantification. The key intermediate lemma is:

cps open var: \x(cps(tx)) = \y(cps(ty)) when x # t ∧ y # t ∧ body t

The left-hand side of the above equality describes a call to cps for the term tx, while

the right-hand side describes a call on the term ty. The two terms only differ by a

renaming of a free variable: the second term is equal to a copy of the first one in which

all the occurrences of the name x have been replaced with the name y. Thus, in order to
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cps rename: cps([x→ y] t) = [x→ y] (cps t) when y # t ∧ lc t

The proof goes by induction on the size of t. Only the case where t is an abstraction is nontrivial.

In this case, we must show that [x → y] (\a(cps(ta))) is equal to \b(cps(([x→ y] t)b)), where
a is an atom fresh for t and b is an atom fresh for [x→ y] t. Because neither a and b are fresh
from both t and [x → y] t, we need to pick a third atom c, fresh from x, y, a, b and t. This
freshness allows us to justify the following series of rewriting steps.

[x→ y] (\a(cps(ta)))

= [x→ y] (\c([a→ c] (cps(ta)))) by close-val-rename, since c # cps(ta)

= [x→ y] (\c(cps(([a→ c] ta)))) by induction hypothesis, since c # ta

= [x→ y] (\c(cps(tc))) by subst-intro, since a # t

= \c([x→ y] (cps(tc))) by subst-close-var, since c # x, y

= \c(cps([x→ y] (tc))) by induction hypothesis, since y # tc

= \c(cps(([x→ y] t)c)) by subst-open-var, since c # x

= \b([c→ b] (cps(([x→ y] t)c))) by close-var-rename, since b # cps(([x→ y] t))

= \b(cps([c→ b] (([x→ y] t)c))) by induction hypothesis, since b # ([x→ y] t)c

= \b(cps(([x→ y] t)b)) by subst-intro, since c # [x→ y] t

Fig. 5 Proof of a renaming lemma for a function on locally nameless terms

establish the above equality, we need to exploit the fact that the cps function commutes

with renaming (lemma cps rename, stated further on). More precisely, the proof of

cps open var goes as follows:

\y(cps(ty))

= \y(cps([x→ y] (tx))) by subst-intro

= \y([x→ y] (cps(tx))) by cps rename

= \x(cps(tx)) by close var rename

It remains to explain how to prove that cps commutes with renaming.

cps rename: cps([x→ y] t) = [x→ y] (cps t) when y # t ∧ lc t

We prove by induction on the size of the term t that, for any names x and y, the cps

function distributes over the renaming of x into y. The details of the proof appears in

Figure 5. Two basic properties of the cps function are also needed in the verification

of the CPS transformation: it preserves local closure and it preserves the set of free

variables. These two facts can be easily proved by induction.

cps lc: lc t ⇒ lc (cps t)

cps fv: lc t ∧ x # t ⇒ x # (cps t)

7 Advanced binding structures

All the binders considered so far in the paper are simple binders: they just bind one

name at a time in a given body. This section discusses the representation of multi-

ple binders, pattern matching structures and recursive binders. The manipulation of

these advanced forms of binding structures involves lists of fresh atoms, so we start by

introducing notation for describing such lists.
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7.1 Lists of fresh atoms

Let overlined symbols denote lists of values. For example, x stands for a list of atoms

and t stands for a list of terms. The notation |x| denotes the length of the list x. The

constant nil denotes the empty list, and x :: y denotes the consing of x to the list y.

We introduce a proposition, written “distinct L n x”, to capture the property that

x is a list of n pairwise-distinct atoms that are all fresh from the set L. The predicate

distinct can be implemented in several ways. We have found it convenient to use the

following inductive definition.

distinct L 0 nil
distinct-nil

x # L distinct (L ∪ {x}) n y
distinct L (n+ 1) (x :: y)

distinct-cons

Assuming we have a fresh name generator, we can build an iterated fresh name

generator, called fresh list. Given a list L and a natural number n, the function fresh list

returns a list x made of n distinct atoms that are all fresh for L. More formally, if x is

defined as “fresh listLn”, then the proposition “distinct L n x” is satisfied.

In the case of simple binders, the cofinite quantification takes the form “∀x, x 6∈
L ⇒ P x”, where P is some predicate. Following mathematical presentation, we have

abbreviated this statement as “∀x 6∈ L, P x”. In the case of multiple binders, the cofi-

nite quantification takes the form “∀x, distinct L n x⇒ P x”. Similarly, we introduce

an abbreviation: we write “∀xn 6∈ L, P x” as a shorthand for that statement.

7.2 Multiple bindings

To present the way multiple binders can be handled in locally nameless style, we extend

the grammar of λ-terms with a let construct that binds several names at once. In ML,

this binding form is typically written “letx1 = t1 and . . . andxn = tn in t′”. For the

sake of presentation, we abbreviate the construction as “letx = t in t′”. This simple

construction suffices to illustrate the treatment of multi-binders.

When working with multi-binders, there are two possibilities for representing bound

variables. One possibility is to treat a multi-binder binding n variables exactly as a

sequence of n abstractions. Yet, this approach is not very practical to work with. In

particular, when the opening or the substitution function reaches a multi-binder, it

needs to augment the current depth by the number of variables that are bound by

that multi-binder. To avoid such arithmetic operations, we chose to follow another

approach. We represent bound variables with two natural numbers: the first number

is a de Bruijn index describing to which multi-binder the variable is bound, while the

second number is an index used to distinguish between the variables bound by a same

multi-binder. (Such use of pairs of indices to represent multi-binders is well-known to

experts of pure de Bruijn syntax.)

The grammar of λ-terms extended with the multiple let binder appears next. Ob-

serve that bound variables are represented with two indices and that free variables are

still represented using a single atom.

t := bvar i j | fvarx | abs t | app t t | let t t

Simple binders, such as abstraction, are viewed as multiple binders that bind only one

variable. The bound variable “bvar i j” refers to the (i+1)-th enclosing binder, which
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can be either an abstraction or a let. If it refers to a let, then the value j indicates which

of the variables bound by the let is being referred to. If it refers to an abstraction, then

j must be equal to zero (this invariant will be enforced by the local closure predicate).

The opening operation, written tu, replaces all the variables bound to a multi-

binder with terms taken from a list. The term t is the body of the multi-binder being

opened and u is the list of values that are to be substituted for the variables bound by

the multi-binder. The variable opening operation replaces a bound variable “bvar i j”

with the j-th value from the list u when the de Bruijn index i matches the current

depth. Multiple-opening is defined in terms of an auxiliary recursive function, written

{k → u} t.
tu ≡ {0→ u} t

{k → u} (bvar i j) ≡ if (i = k) then (List.nth j u) else (bvar i j)

{k → u} (fvar y) ≡ fvar y

{k → u} (app t1 t2) ≡ app ({k → u} t1) ({k → u} t2)

{k → u} (abs t) ≡ abs ({(k + 1)→ u} t)
{k → u} (let t t1) ≡ let (List.map ({k → u} ·) t) ({(k + 1)→ u} t1)

Note that the call to List.nth in the case of bound variables is always applied to a valid

index when working on locally closed terms (the definition of which appears next). The

recursive calls on the arguments of let are made through a List.map operation applied

to the function that maps a term t to the term {k → u} t.
The local closure predicates ensures that all bound variables are actually bound.

The definition in the case of multi-binders generalizes that of simple binders. The body

of an abstraction is opened with a list made of a single fresh name. The body of a let-

binder is opened with a list of fresh names whose length is equal to the number of

arguments of that let.

lc (fvarx)
lc-var

lc t1 lc t2

lc (t1 t2)
lc-app

∀x 6∈ L, lc (tx::nil)

lc (abs t)
lc-abs

List.forall (lc ·) t (∀x|t| 6∈ L, lc (t1
x))

lc (let t t1)
lc-let

The definition of the predicate “body” also needs to be generalized. The proposition

“bodiesn t” asserts that t becomes a locally closed term when opened with n names.

bodiesn t ≡ ∃L, ∀xn 6∈ L, lc (tx)

The semantics of multi-binders can be defined using the multiple opening operation.

The rules describing the contraction of abstraction and of let-bindings appear next.

bodies 1 t lcu

app (abs t)u −→ tu::nil
beta-red-abs

List.forall (lc ·) t bodies |t| t1
let t t1 −→ t1

t
beta-red-let

A typing rules for let-bindings is shown below. It involves adding several bindings

at once to the typing context. If x is a list of distinct fresh names and T is a list of

types of the same length, we write (E, x : T ) the extension of the environment E with

all the bindings from the list obtained by pairing items from x with items from T .

∀ (t, T ) ∈ (List.combine t T ), E ` t : T

∀x|t| 6∈ L, E, x : T ` t1x : T1

E ` let t t1 : T1
typing-let
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7.3 Pattern matching

The manipulation of pattern matching constructions also relies on a multiple open-

ing function. In what follows, we explain how the locally nameless representation can

handle linear patterns (where each bound variable may occur at most once) and non-

linear patterns (where a same variable may occur several times). As running example,

we consider the syntax of λ-terms extended with binary pairs, binary sums and pattern-

destructuring abstractions. The key idea is to represent variables of a pattern with de

Bruijn indices when that pattern is used to bind variables, and to describe the same

pattern using names when reasoning on the pattern itself. In a sense, we apply the

locally nameless representation to patterns.

The grammar of terms and patterns appears below. The constructor for abstraction

is built upon a pattern and a term. The constructor for pairs is written pair and the

constructor for injections is written injk , where k is equal to either 1 or 2 (indicating

whether the term is a left or a right injection). The grammar of patterns includes

constructors for bound variables, for free variables, for pairs and for injections. It also

includes wildcard, constants, as well as constructors for describing conjunction and

disjunction of patterns. Remark: alias-patterns, written “p as x” in Caml and “x as p”

in SML, can be viewed as a particular case of conjunction-patterns.

t := bvar i j | fvarx | abs p t | app t t | pair t t | injk t

p := pbvar j | pfvarx | ppair p p | pinjk p |
pwild | pconst t | pand p p | por p p

The meta-variable j ranges over the indices used to identify pattern variables.

Intuitively, if a pattern p binds n variables, then the indices of the pattern variables

should range over the set [0, n[. In the particular case of linear patterns, each index

from the range [0, n[ should appear exactly once in the pattern. Henceforth, the arity

n of a pattern p is written ||p||.
In many programming languages, constants occurring in patterns are not allowed to

contain any free variable. However, if we allow pattern expression of the form “pconst t”

to appear with a non-closed term t, then the functions manipulating syntax (opening,

closing, substitution and the free-variable function) need to be extended so as to tra-

verse patterns and work on the terms occurring inside patterns.

The variable opening operation for patterns turns bound pattern variables into free

pattern variables. This operation, written px, is defined as follows.

(pbvar j)x ≡ List.nth j x

(pfvar y)x ≡ pfvar y

(ppair p1 p2)x ≡ ppair (p1
x) (p2

x)

(pinjk p)
x

≡ pinjk (px)

(pwild)x ≡ pwild

(pconst t)x ≡ pconst t

(pand p1 p2)x ≡ pand (p1
x) (p2

x)

(por p1 p2)x ≡ por (p1
x) (p2

x)

Note that List.nth is always applied onto a valid index when the pattern involved in

the variable opening operation is well-formed.

A closed pattern p is a well-formed closed pattern, written “pattern p”, if and only if

the variable opening of the pattern p with a list x of fresh names returns a well-formed

opened pattern whose free variables are exactly those in the list x. To describe well-

formed opened patterns, we introduce a judgment, written “binds p S”, which states

that the opened pattern p binds exactly the names in the set S. In particular, this

judgment ensures that no bound variable remains in an opened pattern and that two
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branches of any disjunction pattern bind the same set of names. We start with the

definition of the binding judgment for non-linear patterns, in which a same variable

may be bound several times.

binds-var

binds (pfvarx) {x}

binds-pair
binds p1 S1 binds p2 S2

binds (ppair p1 p2) (S1 ∪ S2)

binds-inj
binds k S

binds (pinjk p) S

binds-wild

binds (pwild) ∅

binds-const
lc t

binds (pconst t) ∅

binds-and
binds p1 S1 binds p2 S2

binds (pand p1 p2) (S1 ∪ S2)

binds-or
binds p1 S binds p2 S

binds (por p1 p2) S

For linear patterns, we need to ensure that each pattern variable occurs at most once.

To that end, we enforce the unions of set of names to be disjoint unions. Only the rules

for pairs and for conjunctions need to be extended with a disjointness premise.

binds p1 S1 binds p2 S2 S1 ∩ S2 = ∅
binds (ppair p1 p2) (S1 ∪ S2)

binds’-pair

binds p1 S1 binds p2 S2 S1 ∩ S2 = ∅
binds (pand p1 p2) (S1 ∪ S2)

binds’-and

We now define well-formed patterns: p is well-formed, written “pattern p”, if and

only if the opening px binds exactly the variables x. This definition involves a cofinite

quantification of the list of variables x. Observe that the proposition “pattern p” cannot

hold if the pattern p contains any sub-pattern of the form “pfvar y” for some name y.

pattern p ≡ ∃L, ∀x||p|| 6∈ L, binds (px) (List.to setx)

The definition of local closure of terms captures well-formedness of patterns occur-

ring inside them. The local closure rule for pattern-destructuring abstraction is:

pattern p (∀x||p|| 6∈ L, lc (tx))

lc (abs p t)
lc-abs

It remains to explain how to state the semantics and typing rules for pattern

matching. To describe the semantics, we introduce a relation describing successful

pattern matching, written “match p t M”, which relates an opened pattern p, a term t,

and an instantiation map M mapping atoms to terms. The inductive definition of this

judgment appears in Figure 6. The definition involves a judgment “compatible M1 M2”.

For non-linear patterns, “compatible M1 M2” should be defined so as to capture that

the two maps M1 and M2 agree on the intersection of their domain. For linear patterns,

“compatible M1 M2” should be defined so as to capture that the two maps M1 and M2

have disjoint domains.

Note that we have added local closure assumptions in the premises of match-wild

and match-const, as well as extra hypotheses in the match-or rules, in order to

ensure regularity. The regularity lemma associated with the pattern matching judgment

“match p t M” states that the term t involved is locally closed, that the pattern p binds

exactly the variables that are in the domain of M and that the map M binds terms

that are locally closed.

match regular: match p t M ⇒ lc t ∧ binds p (dom(M)) ∧ (∀ (x, u) ∈M, lcu)
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match-var
lc t

match (pfvarx) t ({x t})

match-pair
match p1 t1 M1 match p2 t2 M2 compatible M1 M2

match (ppair p1 p2) (pair t1 t2) (M1 ∪M2)

match-inj
match p t M

match (pinjk p) (injk t) M

match-wild
lc t

match (pwild) t ∅

match-const
lc t

match (pconst t) t ∅

match-or-left
match p1 t M binds p2 S2

match (por p1 p2) t M

match-or-right
match p2 t M binds p1 S1

match (por p1 p2) t M

match-and
match p1 t M1 match p2 t M2 compatible M1 M2

match (pand p1 p2) t (M1 ∪M2)

Fig. 6 Judgment describing successful pattern matching

pat-var
okE (x : T ) ∈ E
E ` (pfvarx) : T

pat-wild
okE

E ` (pwild) : T

pat-const
E ` t : T

E ` (pconst t) : T

pat-inj
E ` p : Tk

E ` (pinjk p) : (T1 + T2)

pat-pair
E ` p1 : T1 E ` p2 : T2

E ` (ppair p1 p2) : (T1 × T2)

pat-and
E ` p1 : T E ` p2 : T

E ` (pand p1 p2) : T

pat-or
E ` p1 : T E ` p2 : T

E ` (por p1 p2) : T

Fig. 7 Typing judgment for pattern matching

Using the pattern matching judgment, we can state the reduction rules for pat-

terns. Consider the application of an abstraction “abs p t” onto an argument u. This

application reduces towards tv, where v is the list of subterms of u that are bound to

variables from the pattern p. In the corresponding reduction rule shown below, x is a

list of fresh names used to open the pattern p.

lc (abs p t) (∀x||p|| 6∈ L, match p u {x v})
app (abs p t)u −→ tv

beta-pattern

Remark: another way to guarantee the local closure premise “lc (abs p t)” is to require

both “pattern p” and “bodies ||p|| t”.

Finally, we present the typing judgment for patterns and the typing rule for pattern

matching abstractions. The typing judgment for patterns takes the form “E ` p : T”,

where p is an opened pattern, T is a type and E is a typing environment. Its inductive

definition appears in Figure 7.

The typing rule for pattern matching abstraction is defined as follows: if the pattern

p opened with fresh names x has the type T1 and the term t opened with fresh names

x has the type T2 under the assumption that the free variables named x have the type

T , then “abs p t” admits the type “T1 → T2”.

pattern p (∀x||p|| 6∈ L, x : T ` px : T1 ∧ E, x : T ` tx : T2)

E ` abs p t : T1 → T2
typing-abs
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7.4 Recursive bindings

Recursive bindings occur for instance in the representation of recursive functions or

recursive types. We start with simple recursive binders, and then explain how to support

mutually-recursive structures.

7.4.1 Simple recursive types

Consider a constructor for simple recursive type, written “µX.T” with the named

representation. The meaning is that the name X is bound in the body T to the re-

cursive type “µX.T” itself. The unfolding operation on such a recursive type consists

in replacing occurrences of the variable X with copies of the type “µX.T” inside the

body T .

Such recursive types can be modelled in the locally nameless representation using

a constructor “recT”, which is a simple binder that binds one variable in its body T .

The unfolding operation can be modelled by opening the body T with the type itself.

In the following rule, the symbol ∼ stands for equivalence between types.

recT ∼ T (recT )
rec-type-unfold

7.4.2 Simple recursive functions

Consider a constructor for recursive function, written “fix f x := t” with the named

representation. The meaning is that the name f , which stands for the recursive function

itself, and the name x, which stands for the argument, are bound in the body t. The

β-reduction rule states that when such a function is applied to a value u, it reduces

towards the term “[x→ u] [f → (fix f x := t)] t”. We can model this kind of recursive

function in the locally nameless representation using a constructor “fix t”, which is a

multi-binder that binds two variables in its body t.

The term “fix t” is locally closed if and only if its body t is locally closed when

opened with a list x made of two names.

∀x2 6∈ L, lc (tx)

lc (fix t)
lc-fix

The reduction rule states that the application of “fix t” to a value u reduces to the

opening of the body t with a list made of u and of the fixpoint itself.

bodies 2 t lcu

app (fix t)u −→ t(u::fix t::nil)
beta-red-fix

The typing rule for fixed points introduces two variables in the typing context,

one for the function and one for its argument. There are two ways of presenting this

typing rule, depending on whether one quantifies over two names one after the other,

or directly over lists of names of length 2. The two approaches are equivalent.

∀ f 6∈ L, ∀x 6∈ (L ∪ {f}), E, f : (T1 → T2), x : T1 ` t(x::f ::nil) : T2

E ` fix t : T1 → T2
typing-fix

∀ y2 6∈ L, E, y : ((T1 → T2) :: T1 :: nil) ` ty : T2

E ` fix t : T1 → T2
typing-fix’



39

Remark: in the first rule, it is also possible to quantify the variables over two different

cofinite sets, i.e. writing “∀ f 6∈ L, ∀x 6∈ L′, . . .”. However, in practice, it is usually

more convenient to instantiate only one set.

7.4.3 Mutually recursive values

The representation of mutually-recursive values is slightly more complex. The represen-

tation of a value that has been defined through a mutually-recursive definition needs to

carry the definitions of the other values that it depend upon. We can extend the gram-

mar of λ-terms with mutually-defined terms by introducing a constructor “mut j t”,

where t is a list of recursive definitions, and j is an index describing which of these

definition corresponds to the current value. Again, we are adapting a standard trick

traditionally associated with the pure de Bruijn representation.

The constructor mut behaves as a multi-binder: it binds n variables in each term

from the list t, where n is the length of t. Thereby, each of the n definitions can refer

to any other definition, including itself. A term “mut j t” is locally closed if each term

in t is locally closed when opened with n names, and if j is a valid index.

0 ≤ j < |t| ∀x|t| 6∈ L, ∀ ti ∈ t, lc (ti
x)

lc (mut j t)
lc-mut

In order to unfold a mutually-recursive definition “mut j t”, we need to open the

j-th body from t with a list of terms. The i-th term from that list should correspond

to the i-th definition, that is, to “mut i t”. So, we introduce an intermediate definition,

written 〈t〉, to describe the list of arguments to be used in the opening operation.

〈t〉 ≡ (mut 0 t) :: (mut 1 t) :: . . . :: (mut (n− 1) t) :: nil where n = |t|

The unfolding rule can now be stated. Below, the symbol ∼ stands for equivalence

between terms.

mut j t ∼ (List.nth j t)
〈t〉

mut-unfold

The β-reduction rule for reducing a mutually-defined function on an argument is a

particular case of unfolding:

lc (mut j t) lcu (List.nth j t)
〈t〉

= abs v

app (mut j t)u −→ vu
beta-red-mut

To type-check a mutually-recursive definition “mut j t”, we introduce n names in

the typing context: one for each definition involved in the mutual recursion. These

names are bound to n types, described by a list T . The i-th term from the list t,

written ti, must admit the i-th type from the list T , written Ti. The type of “mut j t”

is the j-th type from the list T .

∀x|t| 6∈ L, ∀ i, E, x : T ` tix : Ti

E ` mut j t : Tj
typing-mut
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8 A short history of the locally nameless representation

8.1 Names for globally-bound variables, de Bruijn indices for locally-bound variables

The description of a mixed representation using de Bruijn indices for bound variables

and names for free variables is as old as the introduction of nameless dummies, now

most-commonly called de Bruijn indices. Indeed, de Bruijn mentions in his founding

paper the possibility for such a mixed syntax, while describing an algorithm for turning

namefree terms into name-carrying terms [de Bruijn, 1972]. However, de Bruijn does

not discuss this mixed representation any further.

The combination of de Bruijn indices with names appears in early implementations

of proof assistants: in Paulson’s implementation of Isabelle [Paulson, 1986, 1988], as

well as in Huet’s Constructive Engine [Huet, 1989]. The latter served as a starting point

for the implementation of the proof assistants Coq [Coq Development Team, 2009] and

Lego [Luo and Pollack, 1992]. This representation strategy can also be found in various

implementations of HOL, e.g. HOL 4 [Norrish and Slind, 2007], and is briefly described

in Paulson’s book ML for the working programmer [1991].

The main motivations for this mixed representation are simplicity and efficiency.

On the one hand, globally-bound variables and constants, which appear in the envi-

ronment, are represented using names. Therefore, environments can be implemented

using hashtables, and thereby support efficient look-up operations. On the other hand,

locally-bound variables, which correspond to bindings inside terms, are represented us-

ing de Bruijn indices. This saves the need for dealing with α-conversion when comparing

terms and allows exploiting sharing of subterms in algorithms. However, in the imple-

mentation of proof assistants, binders are not systematically opened when traversed,

so the technique used is not, strictly speaking, the locally nameless representation. For

example, the algorithm for testing convertibility of two terms is performed in pure de

Bruijn’s style, traversing abstractions and products without opening their body. The

design decision of not opening binders systematically seems to be motivated by the

need for efficiency. More recently, Epigram [Altenkirch et al., 2005], an experimental

dependently-typed language, has been implemented using the locally nameless repre-

sentation. In the implementation, terms are manipulated using an adaptation of Huet’s

Zipper [1997] to locally nameless syntax [McBride and McKinna, 2004].

8.2 Locally nameless terms for reasoning on name-carrying terms

Gordon [1993] appears to be the first to have used the locally nameless representation

for the purpose of carrying out formal proofs. He used locally nameless terms (which,

somewhat confusingly, he calls de Bruijn terms) for the purpose of formally justifying

the widely-accepted idea that one can reason on name-carrying terms and at the same

time identify terms up to α-conversion. His operations on terms are simplified ver-

sions of those found in Paulson’s book [1991]: binders are systematically opened when

traversed, thus shifting of de Bruijn indices is never necessary.

More precisely, Gordon defines a grammar of locally nameless terms, together with

opening (called instantiate) and variable closing (called abstract). He implements sub-

stitution in terms of variable closing and opening (recall the rule subst as close open

from §3.7), and defines locally closed terms (called proper terms) in terms of a de-

gree function. He then defines name-carrying abstractions in terms of variable closing
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(“Absx t” stands for “abs (\xt)”) and gives a characterization of λ-terms through a set

of rules that closely resemble the rules defining local closure. The main difference is the

treatment of abstractions, for which he uses a “forward” inductive rule whose premise

is “lc t” and whose conclusion is “lc (Absx t)”.

Gordon then defines the set of conventional name-carrying λ-terms as the set of

terms satisfying local closure. Alpha-conversion, which states that the term “λx. t” is

equal to the term “λy. ([x → y] t)” is justified by the lemma close var rename. A

number of lemmas describe how substitution distributes over the constructors. Other

lemmas help reasoning by case analysis and by induction on λ-terms. Gordon and

Melham [1996] later built upon Gordon’s work to justify the soundness of their “Five

axioms of alpha-conversion”, providing an abstract axiomatic representation of quo-

tiented name-carrying λ-terms.

Gordon’s construction involves a lot of infrastructure. Gordon argues that this work

needs be done only once and forall, because all binding constructions can be encoded

into the pure λ-calculus. Yet, it seems that reasoning through such an encoding is not

as easy and lightweight as it sounds. To the extent of our knowledge, no large-scale

formalization has been carried out that way.

8.3 Formal reasoning on locally named syntax

Pollack built the proof system LEGO using Huet’s Constructive Engine as a starting

point [Pollack, 1994b]. While working on the theory of LEGO, he wanted to give a

formal justification to the core part of that theory. This lead him, together with McK-

inna, to formalize Pure Type Systems (PTS) within LEGO itself [McKinna and Pollack,

1993]. In order to avoid de Bruijn indices, they used the locally named representation,

where both bound variables and free variables are represented with names.

The locally named representation shares a lot of features with the locally nameless

representation. The locally named syntax involves a substitution for bound variables

and a substitution for free variables. It also includes a judgment similar to local closure:

a term is said to be variable closed if it contains no unmatched bound variable name.

McKinna and Pollack [1993, 1999] studied in details the problem of the quantification

of free variable names. While they use existentially-quantified rules for their initial

definitions, they show their definitions equivalent to judgments featuring universally-

quantified rules (see §4.2). The universal quantification leads to strong induction and

inversion principles. For the introduction form, they rely on the inductive rule from

the existentially-quantified judgment. This technique provides the desired introduction

and elimination form, but requires a very large amount of infrastructure.

Pollack later suggested that the techniques developed for the locally named repre-

sentation would also work well with what he called the locally nameless representation.

He described typing rules for a Constructive Engine for PTS in that style, using both

the existential and the universal versions of inductive definitions [Pollack, 1994a].

8.4 Formal reasoning in locally nameless style

The POPLMark challenge [Aydemir et al., 2005] has been proposed to stimulate

progress on the topic of formalizing definitions of programming languages and checking

proofs of their properties. The core of the challenge, a formalization of the soundness
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of System F<: , as been designed to stress many of the critical issues involved for for-

malizing languages, in particular issues related to the treatment of variable bindings.

Through several talks related to the POPLMark topic, Pollack has emphasized the

benefits of the locally nameless representation over other first-order representations of

syntax (e.g., [Pollack, 2006]). Leroy attended one of these talks. Soon afterwards, he

completed a solution to the first half of the challenge using the Coq proof assistant

(October 2005). Later, he addressed the second half of the challenge [Leroy, 2007].

His solution is quite close to the formalization of System F<: presented in this paper,

with the exception of the representation of environments and the quantification of free

variable names in inductive definitions. Leroy states inductive definitions using univer-

sal quantification and then derives existentially-quantified introduction lemmas. Yet,

deriving introduction lemmas from universally-quantified definitions is much harder

than deriving them from cofinitely-quantified definitions [Aydemir et al., 2008]. In par-

ticular, Leroy’s submission included dozens of lemmas for showing all definitions and

relations stable through permutation of names.

Nevertheless, the locally nameless representation appeared as an appealing ap-

proach compared to other techniques based on first-order representations. In the fol-

lowing year, several researchers submitted variations on Leroy’s development. Chlipala

[2006] re-implemented it with more aggressive proof automation. Charguéraud [2006]

redesigned it with cofinite quantification. Ricciotti [2007] ported the proof towards

the Matita proof assistant. Together with Aydemir, Pierce, Pollack and Weirich, the

author later carried out further investigations on the locally nameless representation,

focusing in particular on the cofinite quantification and on the development of practical

techniques for working with the locally nameless style [Aydemir et al., 2008].

9 Conclusion

Through this paper, we have described in details the working of the locally nameless

representation. We have explained that there are a few cases where a proof in locally

nameless style is slightly more involved than it would have been in pure de Bruijn

style, because one many need to manually instantiate induction hypotheses or to de-

rive existentially-quantified versions of inductive rules. However, we have found those

cases to be relatively rare in practice. Overall, we believe that the locally nameless rep-

resentation with cofinite quantification is an effective approach to formal metatheory.

The techniques described in this paper have been put to practice through several

large-scale developments. In particular, we have formalized type soundness results for

System F<: and for ML extended with references, exceptions, datatypes, recursion and

pattern-matching. We have also proved the Church-Rosser theorem for pure λ-calculus

and proved type preservation for the Calculus of Construction.

Other researchers have also employed the locally nameless representation to for-

malize results from their research papers, using either Coq or Isabelle/HOL. Many of

them were able to build their development on top of one of the four developments

mentioned in the previous paragraph. A non-exhaustive list appears next.

– de Vries et al. [2007] proved type soundness for uniqueness typing.

– Jia et al. [2008] proved soundness and decidability of type-checking of AURA, a

programming language for access control.

– Benton and Koutavas [2007] formalized a bisimulation for the ν-calculus, a simply-

typed lambda calculus with fresh name generation.
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– Swamy and Hicks [2008] prove type soundness of λair, a language that combines

dependent, affine and singleton types to enforce information release policies.

– Pratikakis et al. [2008] formalized type soundness of a “contextual effects” system.

– Yakobowski [2008] formalized type soundness for a preliminary version of xMLF,

which is a type system that aims at integrating ML-style type inference in System F.

– Russo and Vytiniotis [2009] formalized QML, a type system where explicit System F

types do coexist with ordinary ML types.

– Rendel et al. [2009] formalized F ∗ω , an extension of Fω that allows typed self-

representations (representations of programs inside the programming language).

– Garrigue [2009] formalized a type-checker and an interpreter for the core ML lan-

guage extended with structural polymorphism and recursion.

– Rossberg et al. [2010] formalized the soundness of an elaboration from ML with

modules towards Fω.

– Henrio et al. [2010] formalized type soundness and Church-Rosser property for the

σ-calculus, a theory of objects.

– Papakyriakou et al. [2010] formalized a lambda calculus with impredicative poly-

morphism and mutable references.

– Effinger-Dean and Grossman [2010] formalized a shared-memory, multi-threaded

programming languages with relaxed memory consistency models.

– Montagu [2010] formalized type soundness of Core F-zip, a foundation for a module

system, based on a variant of System F where existential types have an open scope.

– Krebbers [2010] formalized Γ∞, a presentation of type theory without explicit con-

texts, establishing that PTS derivations can be translated into Γ∞ derivations.

– Zhao et al. [2010] formalized System F◦, an extension of System F that uses kinds

to distinguish linear from intuitionistic terms. They established soundness and com-

pleteness of logical equivalence with respect to contextual equivalence.

We hope that the reader will join those researchers and build formal proofs using

the locally nameless representation.
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Jianzhou Zhao, Qi Zhang, and Steve Zdancewic. Relational parametricity for a poly-

morphic linear lambda calculus. In APLAS, volume 6461 of LNCS, pages 344–359.

Springer, 2010.


