
Formalizing Simple Refinement Types in Coq
An Experience Report

Nico Lehmann
PLEIAD Lab, Computer Science Department

University of Chile
nlehmann@dcc.uchile.cl

Éric Tanter
PLEIAD Lab, Computer Science Department

University of Chile
etanter@dcc.uchile.cl

1. Overview
We consider refinement types in which base types can be refined by
constraints expressible in some decidable logic. Such refinement
types have been applied in many settings, such as certification of
security policies [1, 10], and reasoning precisely about heap up-
dates [9, 10]. A lot of work has been done on extensions of the
basic idea of refinements, including inference in liquid types [8],
or mixing static and dynamic checking with hybrid type check-
ing [7]. Recently Chugh has proposed nested refinements [5], which
allow the inclusion of type assertions in the logic of refinements.
Combined with some heap reasoning, this allows static checking of
complex idioms found in dynamic languages [4]. The meta-theory
of these advanced forms of refinements can be tricky, and we be-
lieve it would be helpful to have a basic framework in Coq on top of
which to explore more complex variants of refinement types (and
their meta-theory). In this context, we hereby report on our effort
to formalize in Coq a simple form of refinement types, and estab-
lish their soundness. We identify some key ideas and challenges
involved in the formalization, including both the modeling of the
language in Coq and the proof techniques we used.

2. Simple Refinements
In this section we present simple refinements, the basic system con-
sidered in our development. The syntax in Figure 1 is inspired by
the presentation of Knowles and Flanagan [7], except that here the
language of logical formulas is separate from program expressions.

Simple refinements have the form {x :B | p}, denoting the
set of values of base type B for which the formula p is true. The
language also includes a dependent arrow type (x : T1 → T2).
The syntax of types is defined in three levels: types T contain
formulas, and formulas p contain logical values w. As we will
see, this layering has some implications for proving statements
about types. Also, note that variables are considered to be values.
This is necessary to have a proper interaction with the logic, as a
correspondence between values in the language and constants in
the logic must exist. In the logic, variables represent uninterpreted
constants, which is an important feature to reason about arbitrary
values that satisfy some specification.

The syntax of the logic is parametric in the set of predicates
P and logical functions F . We will see later that we only make a
few assumptions about the semantics of the logic. Finally, note that
expressions are in A-normal form, which is important when dealing
with the dependent application rule. The detailed presentation of
the language is provided in Appendix for reference.

We have formalized these simple refinements in Coq1 and
proven the system to be sound. In addition to the usual progress

1 The Coq development is available online: https://github.com/
pleiad/Refinements.

v ::= λx.e | x | c Values
e ::= v | v v | let x = e in e Terms

if v then e else e

T ::= {x :B | p} | x :T → T Types
p, q ::= P (w) | p ∧ q | p ∨ q | ¬p Formulas
w ::= v | F (w) Logical Values

Figure 1. Simple Refinement Types Syntax

and preservation lemmas to establish type safety, we have proven
the soundness of refinements, namely that values of a refined type
comply with the stated formula:

Theorem (Refinement Soundness). If ø ` v :: {x :B | p} then
p[v/x] is true.

Of course these results are unsurprising: refinement types are
subsumed by more expressive systems already known to be sound
(e.g. Coq). We emphasize that our goal is to understand why re-
finement types are sound (in the spirit of Software Foundations [?
]), and to provide tools to develop the metatheory of more complex
refinement type systems.

3. Remarks and Challenges
We now report on some key features and design choices in our de-
velopment. Some considerations are related to the modeling of sim-
ple refinements. Others are related to the particular formalization in
Coq and the proofs techniques we used.

Subtyping Subtyping is key to refinement type systems. To define
subtyping, we appeal to the notion of entailment or logical conse-
quence. Following an approach similar to the one of Knowles and
Flanagan [6] we parametrize the system with a judgment ∆ � p for
which a few axioms are assumed. Here we use ∆ to range over sets
of formulas. In a typing derivation this context comes from the logic
information extracted from a typing environment (Appendix A.4).

Subtyping simply reduces to this entailment judgment. Intu-
itively, in a type environment Γ, a refinement type {x :B | p} is a
subtype of {x :B | q} if p entails q in the context extracted from Γ.
Formally, we have the following rule for subtyping of refinements:

extract (Γ) ∪ {p} � q
Γ ` {x :B | p} <: {x :B | q}

Our approach differs from the one of Knowles and Flanagan
in that we define explicitly a way to extract formulas from typing
environments, instead of assuming a “theorem proving oracle” rep-

1 2015/12/1

https://github.com/pleiad/Refinements
https://github.com/pleiad/Refinements

resented by the judgment Γ ` p ⇒ q. Our definition lets us define
the axioms required for the judgment by appealing only to concepts
relative to the logic.

Other approaches define subtyping using validity [5, 8]: a query
Valid (JΓK ∧ p → q) is delegated to an external solver. Here JΓK
corresponds to the conjunction of all the formulas extracted from
Γ. This approach requires giving a specific meaning to the syntax
of the logic. Moreover, a validity query is just an algorithmic way
to compute the more general entailment judgment. We prefer our
approach because it allow us to understand the requirements on the
logic just through the meaning of the entailment judgment.

Axiomatization of the logic We want our formalization of simple
refinements to be parametric, yet not any semantics for the logic
will do. At least we require the logic to support means to reason
about equality. We also expect the entailment judgment to respect
the usual semantics, meaning that it captures the notion of a state-
ment that logically follows from a set of assumptions. Finally, we
require entailment to be monotone in the logic.

We encode these properties in the form of axioms about the
entailment judgment. Here we state all the axioms we used to prove
refinement soundness.

1. (Valid equality) ∅ � (v = v).

2. (Assumption) ∆ ∪ {p} � p.

3. (Cut) If ∆ � p and ∆ ∪ p � q then ∆ � q.

4. (Monotonicity) If ∆1 � p then ∆1 ∪∆2 � p.

5. (Substitution) If ∆ � q then ∆[v/x] � q[v/x].

The operation ∆[v/x] corresponds to the natural lifting of sub-
stitution to sets of formulas. The first three axioms correspond di-
rectly to the natural semantics we expect for entailment. The fourth
axiom requires entailment to be monotone in the logic. The last ax-
iom demands a little more attention. As we have dependent types
we must define a substitution operation for types which is defined
using the same operation for formulas. So, the operation p[v/x] is
inherited from the definition of substitution in types. When inter-
preting p[v/x] in the context of an entailment judgment the oper-
ation does not directly translate to substitution of free variables in
the logic. In the context of an entailment judgment x does not de-
note a free variable, but an uninterpreted constant. Thus, it is more
accurate to say that p[v/x] just gives the same name to x and v,
restricting the interpretation of both constants to be the same. What
makes the last axiom interesting is that v is not necessarily a fresh
constant and it could be already mentioned in ∆ or q. So, the axiom
states that if we know that ∆ entails q for any interpretation of the
constants x and v we also known that the judgment holds for the
specific cases where x and v have the same interpretation.

Introduction of abstractions into the logic As the language of
refinements is separate from expressions we must proceed with care
in the use of dependent types. The syntax of the language is defined
in A-normal form so only values are allowed in the argument
position of an application. Thus we only need to define substitution
of values into types and we can ensure that all obligations of
entailment stay within the same logic.

One more detail has to be considered though. Because values
need to be introduced into the logic, the logic must be able to han-
dle all types of values, in particular abstractions. As we are aim-
ing for simplicity, we do not defer any reasoning about functions
to the logic. Instead we introduce lambdas by assigning each one
an atomic name. So, the logic can only reason about equality of
lambdas using these names. We do this by requiring all lambdas
to be annotated with a label, and define function equality based on
these labels. Function labels could be understood as being intro-

duced in a prior transformation of the program (e.g. along with A-
normalization). Another alternative would be to pick a fresh name
for each lambda introduced into the logic, thus having only ref-
erence equality. Using the labels gives flexibility, because a more
interesting approach to compute equality between functions could
be used.

Locally nameless representation Because the considered lan-
guage has both refinements and dependent types, we must deal
with bindings in both types and terms. We adopt the locally name-
less representation [2], motivated by the large number of formal
developments that adopted it successfully to simplify dealing with
name binding. In brief, the locally nameless representation con-
sists in syntactically separating bound variables (representing them
with de Bruijn indices) from free variables (represented as atoms,
ie. names). Notably, in the locally nameless representation, an ab-
straction has the form λe and to inspect the body e, one has to
first provide a fresh name x to open the abstraction. The variable
opening operation, written ex, replaces all the indices of e bound
to the abstraction λe with the name x.

Often we have to define inference rules that hold only for vari-
ables that are “fresh enough”; of course we need to precisely define
this notion. Following Charguéraud, we combine the locally name-
less representation with cofinite quantification, which consists in
existentially quantifying over a finite set of names L for which the
given rule does not hold. Thus the rule applies to the cofinitely-
many names not in L. As an elimination form the cofinite rule of-
fers a strong hypothesis because the property holds for cofinitely-
many names. As an introduction form it is easy to find a set L for
which the rule holds and in most cases involves choosing L as large
as possible in the context of a proof.

As a drawback, it is necessary to define substitution for free
variables besides the already mentioned opening operation. It is
then necessary to prove a number of lemmas relating both opera-
tions. In the case of simple refinements the number of lemmas is du-
plicated because the same properties must be proven for types and
terms. However, these lemmas are easy to prove and once proven,
the rest of the proofs proceeded with ease in this respect.

Weakening Our proofs also present a lot of obligations that can
be resolved just by weakening a hypothesis. Weakening lemmas
have to be proved and stated in a general way, allowing the weak-
ening of the environment arbitrarily in the middle. For example the
weakening lemma for the typing judgment has the following form:

` Γ1,Γ2,Γ3 Γ1,Γ3 ` e :: T

Γ1,Γ2,Γ3 ` e :: T

This makes it impossible to apply the lemmas directly and envi-
ronments have to be rewritten to match the actual statements. We
have developed some tactics that try to “guess” the needed rewrit-
ing based on the environment in the current goal and the environ-
ment in the hypothesis. This allowed us to automatize most of the
proofs that can be directly resolved by weakening some hypothe-
sis. For example, our tactics can automatically prove the judgment
Γ1, x :T,Γ2 ` e :: T in a context with the hypothesis ø ` e :: T .

Well-formedness For an environment to be well-formed all free
variables in types must be defined upfront (Appendix A.2). The typ-
ing and subtyping judgments are defined so they hold only for well-
formed objects. A main issue in our development was the proof of
this property. However, most obligations of well-formedness can
be directly resolved by extracting properties and inverting hypothe-
ses in the context. We have automatized this task and most obli-
gations of well-formedness are resolved automatically. We adapted
this idea from the examples found in the locally nameless library2.

2 http://www.chargueraud.org/softs/ln/

2 2015/12/1

http://www.chargueraud.org/softs/ln/

Combined induction principle Finally, probably the most inter-
esting technique we came up with is for dealing with the three
levels of syntax in types mentioned in Section 2. Most properties
about types involve making a proof of the same property lifted to
formulas, and then to logical values. Despite not being necessary,
for convenience, we define types, formulas and logical values to be
mutually recursive. This “trick” allows us to easily define a com-
bined mutual induction principle and make proofs about the three
syntactic levels at the same time. We end up with a series of tuples
with properties about the three levels. This technique turned out to
be really convenient because in most cases the apply tactic can
automatically decide which version of the property to use.

4. Perspective
The formalization of simple refinements presented some difficul-
ties mostly because of the structure of types (e.g. free variables in
the well-formedness definition and three-level structure of types).
We developed some proof techniques to address these points more
conveniently. We believe these insights can be used in the formal-
ization of similar systems.

Based on this preliminary work we now want to explore more
complex refinement type systems. In particular, Knowles and
Flanagan proposed the use of existential types to recover composi-
tional reasoning in refinement types [6]. Additionally, this system
supports the definition of an algorithmic typing judgment, as used
in Chugh’s implementation of nested refinements [3]. We are cur-
rently exploring these ideas in Coq on top of the simple refinements
presented here.

References
[1] J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Maffeis.

Refinement types for secure implementations. ACM Transactions on
Programming Languages and Systems, 33(2):8:1–8:45, Jan. 2011.

[2] A. Charguéraud. The locally nameless representation. Journal of
Automated Reasoning, pages 1–46, 2011.

[3] R. Chugh. Nested Refinement Types for JavaScript. PhD thesis,
University of California, Sept. 2013.

[4] R. Chugh, D. Herman, and R. Jhala. Dependent types for JavaScript.
In Proceedings of the 27th ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages and Applications (OOP-
SLA 2012), pages 587–606, Tucson, AZ, USA, Oct. 2012. ACM Press.

[5] R. Chugh, P. M. Rondon, A. Bakst, and R. Jhala. Nested refinements:
a logic for duck typing. In Proceedings of the 39th annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL 2012), pages 231–244, Philadelphia, USA, Jan. 2012.
ACM Press.

[6] K. Knowles and C. Flanagan. Compositional reasoning and decidable
checking for dependent contract types. In Proceedings of the 3rd
Workshop on Programming Languages Meets Program Verification,
PLPV ’09, pages 27–38, New York, NY, USA, 2008. ACM.

[7] K. Knowles and C. Flanagan. Hybrid type checking. ACM Transac-
tions on Programming Languages and Systems, 32(2):Article n.6, Jan.
2010.

[8] P. M. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. In R. Gupta
and S. P. Amarasinghe, editors, Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI 2008), pages 159–169. ACM Press, June 2008.

[9] P. M. Rondon, M. Kawaguchi, and R. Jhala. Low-level liquid types. In
Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’10, pages 131–144,
New York, NY, USA, 2010. ACM.

[10] N. Swamy, J. Chen, and R. Chugh. Enforcing stateful authorization
and information flow policies in fine. In ESOP 2010: 19th European
Symposium on Programming, number MSR-TR-2009-164. Springer
Verlag, March 2010.

A. Appendix
A.1 Syntax

c ∈ Constants, x ∈ ValueIdentifiers
P ∈ PredicateSymbols, F ∈ FunctionSymbols

v ::= λx.e | x | c Values
e ::= v | v v | let x = e in e Terms

if v then e else e

T ::= {x :B | p} | x :T → T Types
p, q ::= P (w) | p ∧ q | p ∨ q | ¬p Formulas
w ::= v | F (w) Logical Values
Γ ::= ø | Γ, x :T | Γ, p Environments

A.2 Well-formedness

` Γ ` ø

` Γ fv(p) ⊆ dom(Γ)

` Γ, p

` Γ x /∈ dom(Γ) fv(T) ⊆ dom(Γ)

` Γ, x :T

Γ ` T
` Γ fv(T) ⊆ dom(Γ)

Γ ` T

A.3 Typing judgment

Γ ` e :: T ` Γ
Γ ` c :: ty(c)

` Γ Γ(x) = {y :B | p}
Γ ` x :: {z :B | z = y}

` Γ Γ(x) = y :T1 → T2

Γ ` x :: y :T1 → T2

Γ ` T1 Γ, x :T1 ` e :: T2

Γ ` λx.e :: x :T1 → T2

Γ ` v1 :: x :T1 → T2 Γ ` v2 :: T1

Γ ` v1 v2 :: T2[v2/x]

Γ ` v :: {x : Bool | p}
Γ, v = true ` e1 :: T Γ, v = false ` e2 :: T

Γ ` if v then e1 else e2 :: T

Γ ` e1 :: T1 Γ, x :T1 ` e2 :: T2 Γ ` T2

Γ ` let x = e1 in e2 :: T2

Γ ` e :: T1 Γ ` T1 <: T2

Γ ` e :: T2

A.4 Subtyping

Γ ` e <: T

extract (Γ) ∪ {p} � q
Γ ` {x :B | p} Γ ` {x :B | q}

Γ ` {x :B | p} <: {x :B | q}

Γ ` T21 <: T11 Γ, x :T21 ` T12 <: T22

Γ ` x :T11 → T12 <: x :T21 → T22

3 2015/12/1

extract (ø) = ∅
extract (Γ, x : {y :B | p}) = extract (Γ) ∪ p[x/y]

extract (Γ, p) = extract (Γ) ∪ {p}
extract (Γ, x :T1 → T2) = extract (Γ)

A.5 Soundness
Soundness of the system is expressed in the three following prop-
erties.

Theorem 1 (Progress). If ø ` e :: T then either exists some e′

such that e→ e′ or e is a value.

Theorem 2 (Preservation). If ø ` e :: T and e → e′ then
ø ` e′ :: T .

Theorem 3 (Refinement Soundness). If ø ` v :: {x :B | p} then
ø � p[v/x].

4 2015/12/1

	Overview
	Simple Refinements
	Remarks and Challenges
	Perspective
	Appendix
	Syntax
	Well-formedness
	Typing judgment
	Subtyping
	Soundness

