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With the notable exception of abstract, Coq’s standard col-
lection of tactics are free from side effects. In this talk, I propose
to make the case that additional tactics with limited side effects
that are “local” to a given proof can have a considerable impact on
performance, presenting as evidence a set of ML tactics that have
been developed as part of the Fiat deductive synthesis framework.
In particular, I’ll show how a version of abstract that adds trans-
parent definitions to the global context and tactics that manipulate
hint databases can shrink both the memory usage and processing
time of a proof script by an order of magnitude.

Deductive Synthesis in Fiat We begin with a brief overview of
the Fiat [1] framework for deriving implementations of abstract
data types (ADTs) in Coq, highlighting two facets of this domain
where side effecting tactics are useful. Fiat ADTs are specified using
nondeterministic reference implementations whose operations are
defined in terms of a model of internal state. Figure 1 gives an
example specification of an cache ADT modelling its internal state
with mathematical sets and featuring with empty, insert, update,
and lookup methods. The body of each of these methods lives in
the nondeterminism monad, leaving behaviors such as the cache
eviction policy underspecified.

ADT CacheSpec implementing CacheSig :=
rep := Set of (Key × Value)
constructor “empty” := return ∅
method “insert” (r : rep, k : Key, v : Value) : rep :=
return ((k, v) ∪ r)

method “update” (r : rep, k : Key, f : Value → Value) : rep :=
{r′ | ∀v. (k, v) ∈ r → ∀kv. kv ∈ r′ → kv = (k, f(v))

∨ kv ∈ RemoveKey(k, r)}
method “lookup” (r : rep, k : Key) : option Value :=
{vopt | ∀v. vopt = Some v → (k, v) ∈ r}

Figure 1. An abstract data type for caches

An implementation of this ADT is the first component of the re-
finement type {impl | CacheSpec �≈ impl}, where �≈ is simply
an abstraction relation [2, 3] lifted to the nondeterminism monad.
The proof component of this refinement type guarantees that impl
is correct-by-construction. An inhabitant of this refinement type
is developed using Coq’s standard interactive proof development
mechanism, using a combination of setoid rewriting and custom
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Ltac tactics for building ADT refinement proofs. By constraining
the specifications to specific subdomains, derivations can be further
automated by codifying design decisions as refinement lemmas that
are intelligently selected by domain-specific tactics. As an example,
the distribution of Fiat includes a library for specifying and imple-
menting ADTs with SQL-like operations. Similar domain-specific
synthesis libraries for parsers and cryptographic primitives are cur-
rently under development. This quick overview is enough to high-
light the two challenges to performant synthesis that side-effecting
tactics can help address: concise domain-specific specifications and
the synthesis of intermediate terms.

Concise domain-specific specifications Fiat ADTs are shallowly
embedded, allowing users to draw on all of Gallina when writing
specifications and allowing the synthesis process to produce easily
extractable implementations. ADTs are encoded as records parame-
terized over a signature containing method names and their domain
and codomain. Fiat’s domain-specific synthesis libraries similarly
use parameterized definitions for modelling internal state. Figure 2
shows the definition of a “schema” used by our SQL-like synthesis
library to model state using ensembles for the “tables” of an ADT.

Definition MessagesSchema :=
Query Structure Schema

[ relation messages has
schema <"number"::nat, "date":: nat, "msg"::list string>;

relation contacts has
schema <"number"::nat, "name"::string> ].

Figure 2. Fiat specification for an address-book database

In both cases, these parameterized definitions allow for concise,
natural-looking specifications that can be generically manipulated by
tactics when synthesizing a term. The downside is that the types used
to index these definitions are repeated throughout the proof term.
Since derivations consist of sequences of small refinement steps,
seemingly innocuous inefficiencies in the definition of an index can
quickly cause a memory blowup. The natural choice of strings for
identifiers in specifications, for example, leads to slightly larger
specifications, but this penalty is compounded with each refinement
step. Initial versions of the library created auxiliary definitions for
each string literal to avoid this problem, improving performance
at the cost of clunkier specifications. Maximizing performance
required aliases for each component of the schema, i.e. the headings
for each table, quickly leading to unwieldy specification.

Synthesis of intermediate terms Predefining aliases is not a com-
plete solution, however, as automated tactics actually synthesize
terms during a derivation. As an example, the synthesis tactic for
the SQL domain selects appropriate “indexes” on tables using com-
binations of data structures drawn from a library of implementation
strategies. Defining aliases for these intermediate terms forces users
to make implementation choices instead of synthesis tactics.
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Side-Effecting Tactics to the Rescue We solve both of these
problems using cache term, a transparent version of abstract
implemented as an ML tactic. Combining this tactic with Ltac’s
contextual goal matching allows refinement tactics to identify terms,
transparently abstract them, and fold the newly introduced definition
to reduce the size of the goal. In order to avoid introducing duplicate
definitions, we have also built ML tactics for adding hints to a
database and for iterating a tactic over the hints in a database. The
latter is used to keep track of abstracted definitions, which are
then folded in subsequent goals using the latter tactic. Figure 3
summarizes each of these tactics.

Tactic Summary
cache term δ as ι Add a definition with identifier ι for the

term δ to the global context
cache term δ run κ Add a definition with a fresh identifier

for the term δ to the global context and
run the tactic κ on the new identifier

add hint δ to η Add a resolution hint for definition δ to
the database η

foreach η run κ Applies the tactic κ to each resolution
hint in η

Figure 3. Summary of the side-effecting tactics included in Fiat.

Evaluation To demonstrate the value of these side-effecting tac-
tics, summarizes the evolving performance on the three benchmarks
included in the original Fiat paper. Our initial attempts at allow-
ing tactics to construct implementations resulted in a large jump
in memory usage for each benchmark: after the switch, the largest
benchmark took 23GB of memory and ran for close to 100 minutes.
Our next iteration introduced local definitions for constants by let
binding them in the proof context, reducing the memory footprint
and runtime by 5x for our examples. Using the side-effecting tactics
presented here led to an additional 3x improvement in both memory
usage and runtime for all the examples.

Discussion A pleasant characteristic of these tactics is that their
side effects are localized, in the sense that the performance gains
observed above aren’t impacted if the effects of these tactics aren’t
observable outside of the proof they in which they are utilized and
can be discarded after the final proof term is checked. In this regard,
they should be compatible with the support for parallel processing
of definitions in the upcoming 8.5 release. We posit that additional
variants of abstract may also be useful when synthesizing terms
via tactics, particularly lifting the abstract’s current restriction to
goals without existential variables.
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Figure 4. Memory usage and derivation times for ADTs with SQL-
like operations.
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