
The Category-theoretic Solution of
Recursive Ultra-metric Space Equations

Amin Timany
iMinds-DistriNet – KU Leuven

firstname.lastname@cs.kuleuven.be

Bart Jacobs
iMinds-DistriNet – KU Leuven

firstname.lastname@cs.kuleuven.be

Abstract
We give a short description of our implementation in Coq sup-
porting the construction of category-theoretic solutions to recursive
ultra-metric space equations for domain theory. This is one step in
our efforts to provide a category-theoretical foundation for program
semantics and program logics.

Introduction One particular difficulty in defining a denotational
semantics for concurrent higher-order imperative programming
languages is the fact that their models are solutions to recursive
and sometimes circular equations. The same applies to defining
semantics of program logics for verification of programs written
in these languages. This is because a programming language’s se-
mantics is usually used to reason about soundness of such program
logics. To be more specific, to interpret an imperative programming
language with higher-order store we need a model of the program’s
heapW = N ⇀fin T (usually referred to as worlds in the Kripke
style semantics) that maps memory locations to types. Here, finite-
ness is to indicate that only a finite number of memory locations are
allocated. On the other hand, to interpret types, we need to interpret
reference types (“ref τ” for a type τ ) depending on the world (state
of the heap) at hand. That is, ref τ for a world w should be inter-
preted as the set of memory locations that have type τ in w. Hence,
types should be interpreted as T = W →mon 2V where V is
the set of values (including memory locations). The monotonicity
requirement is for the sake of coherence. That is, allocating more
memory locations should not shrink the set of values of a type. In
case of reference types it should indeed increase them. This evi-
dent circularity is the main cause of difficulties faced in defining
semantics of such programming languages. This is best explained
in [2].

Solution in M-categories Such recursive and circular domain-
theoretic equations are usually solved in a category enriched over
a category with extra structure which allows construction of such
solutions. These solutions are usually in the form of the fixed points
of some functors unique up to isomorphism. Such a method is
presented in [1] and compared to some other relevant works.

In [1], the extra structure is that of a non-empty complete
bounded ultra-metric space. An ultra-metric space consists of a
set M and a distance function δ : M ×M → R+ to the positive
real numbers such that:

UM-1 ∀x, y. δ(x, y) = 0⇔ x = y
UM-2 ∀x, y. δ(x, y) = δ(y, x)
UM-3 ∀x, y, z. δ(x, y) ≤ max(δ(x, z), δ(y, z))

An ultra-metric space is complete if every Cauchy sequence has
a limit. It is bounded if the codomain of δ instead of R+ is
the set [0, b] for some b ∈ R+. A function f : M → M ′

from one ultra metric space to another is called non-expansive

if δ′(f(x), f(y)) ≤ δ(x, y) and contractive if there is a c < 1 such
that δ′(f(x), f(y)) ≤ c · δ(x, y).

Intuitively, the distance function of an ultra metric space can be
thought of as the degree of similarity of two elements rather than
their spatial distance. One particular class of ultra-metric spaces
are bisected ultra-metric spaces where the distance function δ :
M×M → {0}∪{2−n|n ∈ N}. As an instance, consider the space
of functions from natural numbers to a set A where the distance is
defined as:

δ(f, g) =

{
0 if f = g

2max{n|∀m<n. f(m)=g(m)} otherwise

In [1], the authors call a category C an M-category if it is en-
riched over the category of non-empty complete 1-bounded ultra-
metric spaces CBULTne . It is furthermore required that the com-
position operation for morphisms of C forms a non-expansive func-
tion. The domain of this composition function is taken to be the
product of the ultra-metric spaces in the usual sense (the product in
CBULTne ).

A functor F : C → D from one M-category to another is
called locally non-expansive and locally contractive if its morphism
maps are respectively non-expansive and contractive. In [1], the
authors show that any mixed-variance locally-contractive functor
F : Cop × C → C has a unique fixed point up to isomorphism
whenever C has a terminal object and limits (category theoretical
notion of limit) of some class of functors which they call increasing
Cauchy towers. An object A is a fixed point of F if we have
F(A,A) ' A.

Implementation We have implemented (see [5]) the theory of
construction of solutions to locally-contractive functors of [1] in
Coq. This implementation is based on our general implementation
of category theory [4]. In what follows we describe this develop-
ment and give a brief comparison between this work and the other
very recent independent development implementing this theory [3].

Ultra-metric spaces In order to avoid working with real numbers
and having to deal with their idiosyncrasies, we have developed
a more general notion of ultra-metric spaces. That is, instead of
real numbers we use what we call an M-lattice. An M-lattice is a
preorder relation (X,v) such that

ML-1 Has a bottom element ⊥
ML-2 Has meet (t) of arbitrary subsets of X
ML-3 Has a top element >
ML-4 Appr(X) is a subset of X of approximation elements
ML-5 ∀a. a ∈ Appr(X)→ ⊥ @ a
ML-6 ∀a. ⊥ @ a→ ∃b ∈ Appr(X). b v a
ML-7 ∀a. (∀b ∈ Appr(X). a @ b)→ a = ⊥
ML-8 (∀a ∈ Appr(X). ∃b ∈ Appr(X). b @ a)∨

(∃c ∈ Appr(X). ∀a. a @ c→ a = ⊥)



Conditions ML-1 and ML-2 imply that X is a complete meet-lattice
(in the order-theoretic sense). The elements ⊥ and > respectively
play the role of 0 and b (the bound).

In practice we only care about approximations (e.g., of limits)
only for distances in Appr(X). For instance, one can work with
real numbers but only care for approximation of limits only up to
rational numbers. The rest of the conditions are to allow us to prove
that defining limits with approximations up to approximation ele-
ments have the desired properties, e.g., uniqueness and Banach’s
fixed point theorem. The disjunction and existential quantifiers in
Condition ML-8 are respectively represented as sum types and Σ
types (dependent sum type) to allow their elimination in computa-
tional contexts.

The notion of M-lattice as described above allows us to de-
velop a general theory of ultra-metric spaces. They allow us to
prove general properties required, e.g., the fact that CBULTne it-
self forms a complete cartesian-closed M-category. In [3], the au-
thors only provide support for bisected ultra-metric spaces. We rep-
resent bisected spaces by providing an M-lattice whose elements
are monotone functions (in Coq) f : N → Prop. By monotone
we mean ∀n,m. m ≤ n → f(n) → f(m). In this encoding
> is (fun n ⇒ False) and ⊥ is (fun n ⇒ True) and f v g iff
∀n. g(n) → f(n) (note the order of implication). The distance
of two elements of a bisected ultra-metric space is then defined as
δ(x, y)(n) =

∧
0≤i≤n x(n) = y(n) which is obviously monotone.

Contractiveness In order to represent contractiveness without a
contraction factor c, we use a function called contraction rate ρ :
L → L where L is the M-lattice representing distances. It is re-
quired that ρ is monotone, non-expansive (∀x. ρ(x) v x), con-
tractive for positive distances (∀x. ⊥ @ x → ρ(x) @ x) and that
∀x, y ∈ Appr(L). ∃n ∈ N. ρn(x) @ y. Intuitively and practi-
cally in our definition of contractive functions, ρ(x) plays the role
of (c · x). In [3], working with bisected spaces, the authors require
a contractive function f to satisfy the rather strong condition that
δ(fn(x), fn(y)) ≤ 2−n.

Equality In our definition of an ultra-metric space in Coq we have
used the conditions of ultra-metric spaces specified above verbatim.
For equality, we have used Coq’s internal definition of equality.
This is contrary to [3]. There, the authors use setoids to have custom
equalities. In particular, they want to say two elements are equal if
their distance is less than 2−n for any n ∈ N. We prove this using
axioms of functional and propositional extensionality.

M-categories In our development, M-categories are simply cat-
egories where the morphism sets form a complete bounded ultra-
metric space. Note that we don’t require the rather restrictive condi-
tion of non-emptiness. To compensate for this, we require the user
to provide a morphism f : 1→ F(1, 1) for construction and proof
of uniqueness of the fixed point of F . Here 1 is the terminal ob-
ject of the category. This is the only place where the non-emptiness
is actually used in the construction and proofs. The authors of [3]
drop the non-emptiness condition just as we have done.

Categories in [4] are represented using records. We define M-
categories as a record as follows:

Record MCat (L : MLattice) : Type :=
{ MC_Obj : Type;
MC_Hom : MC_Obj→ MC_Obj→ (Complete_UltraMetric L);
MC_compose : forall {a b c : MC_Obj}, NonExpansive

(product_CUM (MC_Hom a b) (MC_Hom b c)) (MC_Hom a c);
. . .
MC_Cat :> Category := {| Obj := MC_Obj; Hom := MC_Hom;

compose := fun _ _ _ x y ⇒ MC_compose (x, y);
. . . |} }.

where product_CUM is the product of complete bounded ultra-
metric spaces. MC_Cat is a let-in projection of the MCat record and

provides a coercion to the type of categories. This means that any
M-category can be simply used as a category whenever necessary.

Moreover, given the η rule for records new in Coq 8.5, when-
ever we create an M-category Cm from an existing category C by
showing that C’s composition is non-expansive, the underlying cat-
egory of Cm produced by the MC_Cat is definitionally equal to C. By
using definitions similar to MCat above, we get definitional equal-
ities for underlying functors of locally non-expansive and locally
contractive functors as well. This means that we have all the def-
initions, lemmas, etc. provided in [4] at our disposal to use with
M-categories and their functors. The authors of [3] have not based
their development on any general purpose category theory devel-
opment and define everything, e.g., functors, (co)limits etc., from
scratch and specific to M-Categories.

Fixed points We prove the existence of fixed points of mixed
variance locally contractive functors the same way as in [1]. The
proof of uniqueness of fixed points in our development is slightly
different. This is due to our different requirements, i.e., lack of non-
emptiness condition. Therefore, we prove that the fixed point of
F : Cop × C → C constructed is unique in the full subcategory
of C where every object A has a morphism fA : 1 → A. This
subcategory is indeed an M-category in which any morphism set
is non-empty. We show that the fixed point constructed is in this
subcategory and furthermore that any two fixed points of F in this
subcategory are isomorphic. The implementation of [3] does not
provide any proof of uniqueness. We use all the necessary category-
theoretical concepts and lemmas, e.g., (co)limits, their uniqueness
up to isomorphism, etc., that are necessary to prove existence and
uniqueness of the fixed points from [4].

Use of axioms Our use of axioms is not limited to the axioms
of propositional and functional extensionality mentioned earlier.
We have also had to made use of some other axioms. Namely, we
have used the axiom of constructive indefinite description on the
natural numbers and not_all_ex_not from the library of Coq to
prove Condition ML-6 for bisected spaces. This is in turn only used
to show that whenever two sequence have their pointwise distances
less than some⊥ @ a then their limits have a distance of at most a.
We use the latter lemma together with excluded middle on whether
some distance is the ⊥ distance or not to prove that some function
is non-expansive which is required for the proof that CBULT (we
don’t construct CBULTne ) has all exponentials. In [3], by using
setoids and considering only bisected spaces the authors require no
axioms to prove similar results.

References
[1] L. Birkedal, K. Støvring, and J. Thamsborg. The category-theoretic

solution of recursive metric-space equations. Theoretical Computer
Science, pages 4102–4122, oct 2010. .

[2] L. Birkedal, B. Reus, J. Schwinghammer, K. Støvring, J. Thamsborg,
and H. Yang. Step-indexed kripke models over recursive worlds. In
Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’11, pages 119–132,
New York, NY, USA, 2011. ACM. .

[3] F. Sieczkowski, A. Bizjak, and L. Birkedal. ModuRes: A Coq Li-
brary for Modular Reasoning About Concurrent Higher-Order Imper-
ative Programming Languages. In C. Urban and X. Zhang, editors, In-
teractive Theorem Proving, volume 9236 of Lecture Notes in Computer
Science, pages 375–390. Springer International Publishing, 2015. .

[4] A. Timany. Categories, 2015. URL https://github.com/
amintimany/Categories.

[5] A. Timany. Category-theoretical Solution of Recursive Metric-Space
Equations, 2015. URL https://github.com/amintimany/CTDT.

https://github.com/amintimany/Categories
https://github.com/amintimany/Categories
https://github.com/amintimany/CTDT

